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SDlv_4ARY

Quantum mechanical calculations are carried out for the reaction

cross-sections of H + Br 2 _HBr + Br. A technique is used which is an

improvement over the distorted wave Born approximation in that an account

is made of the distortion of the HBr bond by the outgoing Br atom. This

approach, called the perturbed Morse oscillator method, is generalized

for all bimolecular, exothermic reactions A + BC _ AB + C for which the

potential energy surface can be described as:

(1) A Morse-like bonding interaction between A and B which

gradually approaches the normal AB bond as C departs.

(2) A mostly repulsive interaction between AB and C which

gradually vanishes as C departs.

The perturbed Morse oscillator method was applied to the specific

case of H + Br 2 _ HBr + Br, a potential energy surface for which was

calculated by the diatomics-in-molecules method of Ellison. This parti-

cular potential energy surface possessed the features (1) and (2) listed

above.

For a wide variety of initial conditions, reaction cross-sections

were obtained which were highest for the higher possible vibrational

states of HBr. Since Ellison's potential energy surface was one which

released most of the energy of reaction upon the approach of H to Br2,

it was dubbed an "attractive" potential energy surface. The high vibra-

tional excitation of the product molecule indicated by the quantum

mechanical calculations of this investigation lends support to the
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classical mechanical calculation of Polanyi, who likewise observed a

high degree of product vibration for an "attractive" potential energy

surface.

To make additional comparisons with the classical mechanical re-

sults of Polanyi, a physically plausible Morse-like potential energy

surface was constructed which released a major portion of the energy of

reaction upon the departure of the product Br atom from HBr. This type

surface was referred to as a "repulsive" potential energy surface and

also possessed the features (1) and (2) mentioned previously. Repeating

the quantum mechanical calculations for this surface, reaction cross-

sections were obtained which attained their highest values for the lowest

four vibrational states of NBr. This result compared favorably with

that of the classical mechanical result of Polanyi for a "repulsive"

potential energy surface.

Since the infrared chemiluminescence studies of the H + Br 2

HBr + Br reaction indicate that most of the HBr molecules are formed in

the lower vibrational states, it was concluded that the "repulsive"

potential energy surface more nearly represented the actual interaction

of H + Br 2 _ HBr + Br. Thus, calculations of the rate constants of the

above reaction were performed using the reaction cross-sections obtained

for the "repulsive" potential energy surface. Due to the substantial

amounts of computer time involved, it was feasible to calculate the

reaction cross-sections corresponding to only a few initial conditions.

The resulting paucity of cross-sections necessitated the simplification

of the modern collision theory of rate constants for bimolecular reac-

tions. Rather than summing over all the statistically weighted initial
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states at a given temperature, only the initial condition corresponding

to a Maxwell-Boltzmann averaged initial energy at that temperature was

considered. Even this simplified calculation, however, gave rate con-

stants in excellent agreement with experiment; that is, at lO00°K a

total rate constant of 1.81 x 1014 cc/mole-sec was obtained as compared

1014 1014 cc/mole-secto the experimental range of 1.04 x - 6.30 x

reported by different investigators. Detailed rate constants (rate

constants referring to the rate of formation of H_r in specific vibra-

tional states) obtained from these calculations were in excellent quali-

tative agreement with the experimental results of Polanyi. That is, at

500°K the detailed rate constants of the fourth, fifth, and sixth ex-

cited vibrational states of HBr relative to the detailed rate constant

for the third excited vibrational state were found by Polanyi to be

0.64, 0.19, and 0.05, respectively. In the present study, the correspond-

ing values determined by the simplified collision theory were 0.38, 0.12,

and 0.07.
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CHAPTERI

INTRODUCTION

Statement of the Problem

Theoretical treatments of gas phase chemical reactions can be

conveniently classified into two parts. The first involves the study

of the details of intermolecular or intramolecular energy transfer,

particle exchange, particle emission, or particle capture. Secondly,

a study must be made of the manner in which a usually broad spectrum

of the above microscopic processes are reflected in the macroscopic or

bulk behavior of gas phase reactions. In other words, the former task

is concerned with the calculation of the probability of particular

events, whereas the latter effort is concerned with formalizing mathe-

matical relationships between these detailed probabilities and observ-

able reaction phenomena.

This study will be involved with the application of the non-

equilibrium collision theory of reaction rates (1-2) to the estimation

of rate constants for simple reactions. In the nonequilibrium collision

theory, the molecular collisions are individually studied with regard to

initial conditions, particle exchange, and energy exchange, the results

being defined in terms of cross-sections Then, the kinetic theory of

gases (3) is used to average over all the effects of the individual

A definition and discussion of the term "cross-section" as it applies

to collisions is given in Appendix A.



2

collisions resulting in reaction to obtain the rate constants.

Scope of the General Discussion

In general, the present investigation will be confined to chemi-

cal reactions that:

(i) Are bimolecular, occurring in a homogeneous gas phase under

practially ideal gas conditions.

(2) Are highly exothermic, releasing more than 20 kilocalories

per mole of one reactant.

(3) Are bimolecular exchange reactions involving only three atoms

A + BC + C . (1-1)

The corresponding reasons for these restrictions are:

(i) Only bimolecular collisions are important at ideal gas condi-

tions, termolecular and higher order collisions occurring only rarely.

Also, the average time between bimolecular collisions in an ideal gas is

long compared to the average collision time (4). Thus, each bimolecular

collision can be analyzed individually, the influence of the other mole-

cules being negligible. Afterwards, the conventional kinetic theory of

gases can be used to obtain the reaction rate by averaging the effects

of all possible types of reaction collisions. This approach is used in

the nonequilibrium collision theory of Hirschfelder, Ross, and others

(1-2).

(2) Recent molecular beam and infrared chemiluminescence experi-

ments have yielded data on how the energy of highly exothermic reactions

of this type is distributed among the products (5-8). Attempts have

been made to use the results of these experiments to elucidate the nature



of the potential energy function governing the nuclear motion.

Assuming an expression, possessing reasonable mathematical form

and containing adjustable parameters, for the potential energy function,

the various nuclear motions occurring during a bimolecular collision

are tracked by classical mechanics. The potential energy parameters

are adjusted until agreementbetween theory and experiment is reached.

So far, no detailed analyses of the nuclear motion occurring in highly

exothermic, reactive collisions have been carried out quantummechani-

cally.

(3) Oneof the simplest possible chemical reactions is the ex-

change reaction

A + BC-_AB + C (1-2)

A third body, atom C in this case, is required to carry away sufficient

energy to makeAB stable, so the simplest reaction must involve at least

three atoms. On the other hand, mathematical difficulties makeit ex-

pedient to limit theoretical studies of the nuclear motion to a three-

body problem. It is well known, of course, that analytical solutions

are not available for the general problem of three-body motion and hence

numerical methods are necessary to study reactions of the above type.

In addition, manycomplex reactions involve one or more steps like

Equation (1-2), so these simple processes are well worth studying.

The Specific Task

The nonequilibrium collision theory of reaction rates (i) will be

applied to the reaction



H + Br2 -_HBr + Br (1-3)

This reaction has an exothermicity of 41 kilocalories and is an important

process in the overall combustion reaction

H2 + Br 2 _ 2 HBr . (1-4)

Recently, a semiempirical calculation of the potential energy surface

for the linear system H--Br--Br was performed by Ellison (9) using his

"diatomics-in-molecules" method. In addition, an infrared chemilumine-

scence study of this reaction has just been performed by Polanyi (i0),

and the distribution of energy among the products analyzed. The approach

to be used in the present study is to modify Ellison's basic potential

energy surface with appropriate terms and include adjustable parameters.

Then preliminary theoretical studies of the nuclear motion will be per-

formed_ the resulting energy distribution among the products examined_

and the potential energy parameters adjusted until reasonable agreement

with the infrared chemiluminescence experiments of Polanyi is obtained.

After the adjustment of the potential energy function, the theore-

tical treatment of the collision dynamics will continue until the cross-

sections required in the nonequilibrium collision theory of reaction

rates are obtained. From these cross-sections the specific rate con-

stants will be calculated and compared with experimental estimates of

the rate constant for the reaction, i.e., Equation (1-3).

Background

Elementary, exothermic, gas phase reactions having low activation

energies have been the center of much scientific and engineering interest



in recent years. The engineering interest derives primarily from the

importance of these rapid, energy releasing processes in combustion

reactions of the sort

H2 + Br2 _ 2 HBr ,

which is thought (Ii) to proceed via the mechanism

(i) M + Br2 _ 2 Br + M

(2) Br + H2 _HBr + H

(3) H + Br2 _ HBr + Br

(4) H + Mr _2 + Br

(5) M + Br + Br _ Br 2 + M

Here, the symbol M denotes any of the molecular species listed above.

Using the steady-state treatment gives rise to (ii)

afnB ]

/

The most rapid, most exothermic step above contributing to the forward

progress of the total combustion reaction, Equation (1-5), is the reac-

tion given by Equation (1-3), i.e., the test system to be used in this

investigation.

Need for Rate Constants of Simple Reactions

In flame propagation studies_ it is usually desirable to know the

rate constants for each of the elementary processes contributing to the



overall combustion reaction (12-14). The rate constants for the slower

elementary reactions can sometimesbe determined by direct experimenta-

tion, but someelementary reactions occur so rapidly that the measurement

of their rate constants cannot be accomplished by direct means. Very

often rate constants for very fast reactions must be approximated by an

analysis of the overall reaction rate. Usually this analysis requires

the use of a very complicated deductive process in conjunction with the

steady-state treatment (ii).

It is apparent, therefore, that a suitable theory for predicting

the rate constants of very fast, simple reactions would find immediate

application in the study of combustionprocesses. Unfortunately, the

simple collision and absolute reaction rate theories, the more tradi-

tional theories of chemical kinetics, are usually inappropriate for

these reactions. Unless the activation energy of the reaction is suffi-

ciently large, for instance, the more energetic reactant molecules will

be depleted faster than they can be replenished by nonreactive colli-

sional processes (15-16). In this case, the Maxwell-Boltzmann distribu-

tion of energy states amongthe reactants is distorted, thus invalidating

the equilibrium hypothesis inherent in the theory of absolute reaction

rates. With regard to the simple collision theory, somereactions in-

volve such complicated intermolecular interactions that steric factors

and collision diameters are difficult to estimate correctly. Thus,

there is a definite need to examine the possibility of estimating rate

constants of rapid, elementary processes by using a theory which not

only avoids the equilibrium hypothesis but also allows for more detailed

study of the intermolecular interactions.
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Nonequilibrium Collision Theory

Such a theory is the nonequilibrium collision theory established

by Hirschfelder and Eliason (i) and Ross and Mazur (2). Conceptually,

this theory bears a resemblance to the nonequilibrium theory for trans-

port properties of polyatomic molecules devised by Wang-Chang and Uhlen-

beck (17). In the latter theory, a molecule of definite chemical type

A and having a definite internal state i is said to constitute a "species"

A(t). The transport processes in a gas of polyatomic molecules were

studied in light of the transitions from "species" A(t) to "species" A(t t)

occurring as a result of bimolecular collisions. For chemical processes,

therefore, it is only necessary to extend the examination to transitions

of the type A(t) to B(j).

Relation Between the Rate Constant and the Reaction Cross-Section

Consider the isolated reaction between A(t) and B(j) to form C(k)

and D(1)

A(t) + B(j) _ C(k) + D(1) (1-7)

The nonequilibrium collision theory gives the detailed rate constant in

the forward reaction as

where p is the initial relative momentum, b is the reduced mass of A and

i

B, _f is the differential cross-section for transition from the initial

state i to the final state f via chemical reaction_ _ is the solid angle



8

of scattering, and Ft(_A) is the momentum distribution function of A(t),

normalized according to

The momentum distribution function of B(j), i.e., Fj(PB) is also

normalized according to Equation (i-9).

The relation between the total and differential cross-sections

for chemical reaction is

(1-9)

(i-i0)

The total reaction cross-section o(k,l;t_j,p) has the units of area and

represents the effective target area presented by a molecule B(j) to an

oncoming molecule A(t), approaching with relative momentum p_ in order

for the collision outcome to be C(k) and D(1).

The total reaction rate constant K t is given by averaging Equation

(1-8) over all possible internal states of the reactants and then summing

over all possible internal states of the products. The resulting ex-

pression for K t is

(l-ll)
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Determination of the Reaction Cross-Sections

Before the reaction rate K t can be evaluated, an expression for

the total reaction cross-section must be obtained. In recent years

attempts have been made to measure _(k,l;t,j,p) by molecular beam ex-

periments (5,7,18,19). At present, however, molecular beam technology

is not sufficiently developed to be of much use for a majority of reac-

tions. It seems that the problem of detecting the product molecules

after collision has limited most molecular beam investigations to reac-

tions involving alkali atoms.

Several attempts to calculate reaction cross-sections theoretically

have been made recently, and the results were compared with data from

molecular beam scattering experiments. Thus far, all of these theoreti-

cal treatments have assumed that the electronic energy can be separated

from the nuclear energy in bimolecular encounters (the Born-Oppenheimer

separation) and that the electrons remain in one state (the "adiabatic"

assumption). Therefore, the theoretical investigation of molecular

collisions is reduced to the following problem in kinematics.

Let N represent the number of nuclei comprising the two colliding

molecules. Then the motion of the two nuclei is governed by the poten-

tial-energy hypersurface dependent only on the ½N(N-I) internuclear dis-

tances. For linear systems the potential energy function depends only

on (N-l) variables.

In order to obtain the potential-energy hypersurface, the

Schroedinger equation corresponding to the electronic motion must be

solved. Unfortunately, an exact solution of the electronic Schroedinger

equation is presently impossible for systems involving more than one
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electron, and hence, semiempirical methods (9,20,21) are necessary if

one wishes to calculate the potential energy hypersurface for compli-

cated systems. Further mention will be madeof these methods in Chapter

II. The discussion that follows will assumethat the required potential-

energy hypersurfaces have already been obtained.

The classical mechanical methodof solving the above kinematical

problem involves the numerical integration of Hamilton's canonical equa-

tions of motion for the interacting nuclei. If, for a large numberof

test cases, one picks a naturally occurring set of initial conditions for

the collision of two reactive molecules, and integrates the equations of

motion to obtain the complete trajectories of all the nuclei involved,

then by simply counting the numberof test trajectories that lead to

reaction and noting the solid angle into which the products are scattered,

one can obtain the differential reaction cross-section. If the potential-

energy h_ersurface is precisely known, then the calculation of the

individual nuclear trajectories is as exact as classical mechanics can

be. Becauseof the manythousands of calculations (test trajectories)

required in order to average over all of the various initial conditions,

the use of classical mechanics in making kinematical studies of the sort

above require an excessively large amountof computer time, even for the

high-speed computers of today. For instance, the most complete classical

mechanical study to date (22) required about ten seconds per trajectory.

Thus, lO0,000 trajectories would require about 270 hours of computer time.

In contrast, the statistical nature of quantum mechanics allows for the

averaging over manyof these initial conditions (impact parameter, mole-

cular orientation, and vibrational phase) with but a single calculation.
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Furthermore, classical mechanicsmay not be valid for studying the motion

of light nuclei at thermal energies under the influence of valence type

forces (23). Thus, a quantummechanical treatment of the reactive

collision problem might be not only less time consuming than a classical

treatment but also more theoretically correct.

On the other hand_ an exact solution of the Schroedinger equation

corresponding to the nuclear motion is practically impossible, and re-

course must be madeto someapproximation scheme. Fortunately, an

approximate method suitable to the problem of reactive collisions between

molecules has already been formulated (24-25). This method is knownas

the perturbed stationary state approximation or molecular wave function

method and will be employed in the present study. In classical mechanics_

suitable approximate methodshave not been developed, and the calculation

of reaction cross-sections must be madeon an all or nothing basis.
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CHAPTERII

REVIEWOFPREVIOUSCONTRIBUTIONS

This chapter will be concerned primarily with past attempts at

calculating the reaction cross-sections necessary in the nonequilibrium

collision theory of reaction rates. As such, the emphasiswill be on

the more promising methods of obtaining the potential-energy hypersur-

faces and the more recent kinematical studies. No discussion will be

madeof the simple collision and absolute rate theories since they have

been extensively presented in the standard textbooks (4,21,26) for the

last quarter of a century. Also, in order to save space, no discussion

of the derivation of Equation (1-8) will be given. Reference to the

papers by Ross (i) and Hirschfelder (2) can be madeby those interested

in the development of the nonequilibrium collision theory of reaction

rates.

Born-Oppenheimer Separation

Most theoretical treatments of reactions of the type

A + BC-_AB + C , (2-1)

have involved the Born-Oppenheimer separation (27), i.e., the separation

of the electronic and nuclear motions. When this methodology is used,

the nuclear motion is assumed to be "adiabatic," i.e., the motions of

electrons and nuclei are independent and the potential energy of the

system varies continuously during nuclear motion, so that this motion is
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not accompanied by electronic transition. A concise discussion of the

Born-Oppenheimer separation has been presented by Kondratiev (28) so

only the important points are presented here.

The Electronic States

The Schroedinger equation governing the electronic motion in the

reacting system is given by (28)

where \ and t represent the set of position vectors for the

nuclei and electrons, respectively, m is the electron mass, N is the
e

total number of electrons, and V2 is the Laplacian operator with respect
r

to r . As indicated, the electronic eigenfunctions _k and eigenvaiues Ck

depend on the coordinates of the nuclei, while the total potential energy

function U depends on the coordinates of the electrons and the nuclei.

During the course of a chemical reaction, the electronic state is

assumed to remain constant; thus, the nuclear motion is assumed to be

governed by a single electronic potential energy function Ck" At ordinary

temperatures, the ground electronic state of the reacting system should

prevail (28). For example, at 1000°K only 0.i percent of the reactive

collisions H + Br 2 _HBr + Br involve species in excited electronic states.

The Motion of the Nuclei

Another result of the Born-0ppenheimer separation is that the
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motion of the nuclei is described by a Schroedinger equation involving

only the nuclear coordinates (28), or

(2-3)

where E is the total energy, Q is the number of nuclei, M denotes the

mass of the _th nucleus, and k represents the electronic states, usually

taken as the ground state. Since only one electronic state is considered

during the collision the subscript can be suppressed when denoting the

nuclear wave function Yk and the potential energy function Ck"

Potential-Energy Functions

As mentioned earlier, the initial stage of the nonequilibrium

collision theory of reaction rates involves solving the problem of the

dependence of the potential energy of the colliding molecules on the co-

ordinates of all their component atoms. For the case of reactions of a

diatomic molecule, BC,with an atom A, it is necessary to know the energy

of the system A + B + C for any relative position of the three atoms. In

general, this problem must be solved not only for the ground state but

also for the excited electronic states. If the total number of atoms in

the system is N, the potential-energy of their interaction will depend

on M = ½N(N-I) coordinates of the atoms (in the case of a linear system

N-I coordinates). The problem, therefore, consists of finding a mathe-

matical expression for the potential-energy hypersurface
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To derive an exact expression for Equation (2-4), for the case of

A + BC_ AB + C, one must solve Equation (2-2). Unfortunately, overwhelm-

ing mathematical complications usually prevent the determination of an

exact solution to Equation (2-2), and recourse must be madeto one of the

approximate methods outlined below.

Ab Initio Calculations

Ab initio calculations have proven quite unsatisfactory for the

study of reaction rates. The treatments have usually involved using the

variational method in conjunction with trial wave functions embroidered

with all sorts of adjustable parameters (29-32). Some well known examples

of these methods are the valence-bond method (33), the linear combination

of atomic orbitals-molecular orbital method (31), and the molecular orbital

method with configuration interaction (34).

How unsatisfactory for reaction rate calculations ab initio methods

are was clearly pointed out in a recent calculation by Boys and Shavitt

(35) for the potential energy surface of the simple reaction H + H2 _

H2 + H. Carrying out an extensive linear combination of atomic orbitals-

molecular orbital calculation, they obtained an activation energy (36) of

15.4 kcal/mole, whereas the experimental activation energy is about 8.8

kcal/mole (37).

Semiempirical Methods

The semiempirical methods of calculating potential-energy surfaces

combine the electronic energy expressions obtained from valence bond

theory with appropriate spectroscopic data. Generally held in higher
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regard than ab initio methods, semiempirical techniques have been widely

used in the absolute reaction rate theory of Eyring (21).

Eyrin_-Polanyi-Sato Method. The most widely used semiempirical

method in the early stages of the absolute reaction rate theory was the

technique devised by Eyring and Polanyi (38). The London equation, derived

from simple valence-bond theory, was used in conjunction with the Morse

parameters for all the diatomic molecules obtainable from the total reac-

tion system. Thus, if one desired the potential energy surface of tlle

reaction A + BC - AC + B, the appropriate London equation would be

= + (2-5)

where CKL and QKL are the exchange and coulombic energies, respectively,

of the molecule KL. Now, if QKL is assumed to be a constant fraction

PKL of the total binding energy of the diatomic, KL, then the Morse

function (39)

(2-6)

where DKL,' aKL , and r_ are the spectroscopically determined Morse para-

meters, can be used to obtain _KL and QKL as functions of rKL. Since

£ : R + e (2-7)
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the n

0 0 '

('2-8)

According to Eyring (38), the activation energies obtained by

this procedure are relatively insensitive to the PKL'S over a large

range of values.

In the middle 1950's, Sato (40) devised a technique to avoid the

assumption of constant coulombic fraction in the Eyring-Polanyi method.

Using the information available on the shape of the antibonding 3Z curve

for H2, he discovered that the antibonding energy-state 3E(r) could be

expressed approximately as

3

_ .o_¢.[.exp[_2a(r._ro)] __2e_pt_a(r._ro.)j IECr) - (2-10)

for the hydrogen molecule. By assuming that this relation holds for

diatomic molecules KL in general, and by using the London expression (38)

for the antibonding energy-state, Sato solved Equations (2-6), (2-10),

(2-7), and (2-11) for QKL and eKL at each interatomic distance; thus_
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he avoided the assumption of constant Coulombic fraction.

In addition, Sato included an adjustable parameter k in the London

equation for the ground-state triatomic energy surface:

Originally, Sato proposed setting k equal to i + S2, where S is

the Heitler-London overlap integral (38), assumed equal for the three

diatomic fragments.

When applied to the system H + H2, however, Sato's treatment re-

quires that S2 = 0.148, whereas the correct value of S2 at the activated

state configuration is about three times larger (37). Furthermore, the

use of a constant S is erroneous since S changes appreciably with inter-

atomic distance. The net result is that Sato's method gives an activated

energy barrier that is much too thin; that is, the contribution of tun-

neling to reaction is in substantial contrast with experimental findings

(37).

Diatomics in Molecules Theory. In 1963, Ellison (41) proposed a

scheme in which the electronic structure of a polyatomic molecule is ex-

pressed in terms of electronic structures for all possible diatomic and

monatomic fragments composing it. Although bearing a strong resemblance
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to the Eyring-Polanyi-Sato method, Ellison's theory contains no exchange

integrals, no coulomb integrals, and no calibration parameters.

A derivation of this new theory will now be demonstrated for the

case of the reaction A + BC _ AB + C, where the reaction configuration

is assumed to be linear.

Consider valence-bond structure wave functions _I and 911 corre-

sponding to A-BC and AB-C, respectively. If the symbols D represent
r

determinantal wave functions (antisymmetrical products af atomic spin

orbitals), then each of the functions _I and YII can be written as

Here, the b coefficients are chosen so that (i) _ is antisymmetric with
nr n

respect to the interchange of spin factors of orbitals forming an electron

pair, (2) _ is the proper eigenfunction of S2 (square of total spin
n

momentum) and S (component of S upon z-axis), and (3) _ is normalized
z n

for infinite separation of the atoms.

Suppose that the polyatomic molecule ABC can be represented by a

resonance of the two valence-bond canonical structures _I and 911 as

(2-i_)

Determination of the optimum coefficients a for which the molecular
n

electronic energy W is minimized results from the solution of the secu-

lar determinant
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HilI - Sl,I W

- g, (2-15)

in which

FI n,_

(2-17)

Here_ H is the total electronic Hamiltonian of the po!yatomic molecule,

and the integration is over all of real space_ dT being a small element

of real space.

Each valence-bond structure can be written as

(2-z8)

where A is the total antisymmetrization operator and Ym' referred to as

the primitive function of the mth structure_ is a linear combination of

simple products of atomic spin orbitals. Now_ a typical energy matrix

element can be expressed as
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(2-19)

since the operators H and A commute.

Next, consider that the total electronic Hamiltonian operator for

the polyatomic molecule ABC can be written as

Each Hp contains all kinetic energy operators and all intraatomic potential-

energy terms in H which depend exclusively upon the coordinates of elec-

trons assigned originally to atom P and not upon the coordinates of any

nuclei other than nucleus P; VpQ contains all interatomic interaction

potential-energy terms in H depending upon electron coordinates common

to atom P and Q only. This method of partitioning H is called the atoms-

in-molecules method by Ellison.

The Hamiltonian HpQ for a diatomic molecule, written in its atoms-

in-molecules form, is

HP_ : _r t- H_ ./- Vp4
(2-21)

Solving this expression for VpQ and substituting into Equation (2-20),

one obtains
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This form of H is referred to as the diatomics-in-molecules (DIM)

Hamiltonian; it contains explicitly no "interaction" operators but only

Hamiltonians for the constituent diatomic molecules and atoms.

Substituting of Equation (2-22) into Equation (2-19) yields

where

At this point, Ellison states that the matrices <H PQ> and <HP)

are not separately Hermitian, and indeed are not completely independent.

This is due to a relationship which exists between <_Q> and <_> .

Since <H> is Hermitian, <H) <H) += _ and thus

[ <_'_>-C,.,J] . [<,_>- <, (2-26)

- [<,'>-<,'>U-[<.'>-<.'>+]-[4,'>-<"'>']= °
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When Equation (2-23) is rewritten in the form

(2-2?)

where

-- •p_- .:; ° ., J (2-28)

•-P _ /( P .PH,,,,, _ H,_,,,* /-/,,,,,) (2-29)

there is no necessary relationship between the elements of what may be

called the diatomic valence state energy matrices_ Q > and atomic

valence state matrices_>. Both new matrices are Hermitian, and both

are defined uniquely in any representation which may be constructed

linearly from our set of canonical valence-bond structures _ (42).
n

Equation (2-27) is the fundamental equation in the method of dia-

tomics in molecules. The total matrix element H has been partitioned
nm

into parts correspcnding to independent contributions from each diatomic

and monatomic fragment. The theory is still exact, no approximations

having been made as yet. Only the use of a limited set of canonical

structures in Equations (2-13) and (2-14) can contribute to errors in

this first portion of the theory; this restriction is common to nearly

all theories of electronic structure.

Consider now a partitioning of the total antisymmetrization
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operator A:

A : A(PQ_ (a-3o)
PQ Ap_ A(p_)

Here, the function of the operators A(pQ) is to antisymmetrize that set

of electrons which are not originally assigned to the diatomic fragment

PQ, whereas ApQ antisymmetrizes that set of electrons which are originally

(P_)
assigned to PQ. The operator, _pQ is the partial or "supplementary"

antisymmetrizer which completes the identity. The original assignment

of the electrons into the two sets is specified by the assignment of

electrons within the primitive function Y in Equation (2-24). Substi-
m

tution of Equation (2-30) into Equation (2-24) yields

(2-31)

since HpQ commutes with both A(pQ) and ApQ.

Since the primitive function Y is a linear combination of simple
m

products of atomic spin orbitals, then

y- ,'_(-
(2-32)

where

2,. = A Jr
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Each sample product d may be written as
r

F r dr

Here, dPQ contains all atomic spin orbitals associated with the diatomic
r

fragment PQ only, whereas d (PQ) contains all other atomic spin orbitals.
r

Thus, the right hand of the integrand in Equation (2-31) can be expressed

as

since

(2-36)

The latter two factors are determinantal functions totally antisymmetric

with respect to those electrons in the set belonging to and not belonging

to the diatomic fragment PQ, respectively.

Now, if the valence-bond approximations to the ground and excited

states of the diatomic molecule PQ are available, then

i_sp m . pr_
F SF

The inverse of Equation (2-37) should be a good approximation of the
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determinantal function in terms of the eigenfunction

bP_ ),.= Z_ C_-' L_P°
J" 5 _ S

(2-38)

Substitution of Equation (2-38) into Equation (2-35) and operation from

the left upon the results by _Q yields

(2-30)

= Z EP_u2P'_z D Cc-'J
.S .i 3 r _ _- r..s

(2-L-o)

Using Equation (2-37), Equation (2-40) is now transformed back to

the determinantal wave function basis:

Hpa Ap_A(p_) g_ = .}- EPa}- Z c 3 (c-') _
(2-_z)

since

Accumulating the double sum over t and r into a single sum over the inde-

pendent determinants_ Du, Equation (2-41) can be written as
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PQ. (P_} 5
(2-43)

Beginning with a canonical set of structures, Yn' for the poly-

atomic molecule, Equation (2-13) can be inverted to obtain equations

for each D in terms of canonical structure wave functions:
U

(2-44)

Substituting Equation (2-44) into Equation (2-43) and combining the

double sum over u and v into a single sum over w, gives

3 _ W 5"W
(2-45)

Introducing Equation (2-45) into Equation (2-31) yields

_, P_ E P_: E s
h,_, ,.5 ..S W S ,,,,v' ,,_,,,v"

(2-46)

where the integrals S are the overlap integrals between valence-bond
nw

structures as defined in Equation (2-16). The EPQ are the experimental
s

energies for the ground and excited electronic states of the diatomie

molecule PQ.

The same procedure can be carried out to obtain the energy inte-

grals _ appearing in Equation (2-29) as
nm'
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(2-++7)

in which the EP are experimental energies for electronic states of the
s

atom P.

It is obvious that Equations (2-27, (2-28), (2-29), (2-46), and

(2-47) are fundamental in the method of diatomics-in-molecules. From

these five relationships, the total energy matrix H may be evaluated
nm

in terms of overlap integrals S and experimental energies of diatomic
nw

and monatomic fragments which comprise the given polyatomic.

In actuality, Equation (2-37) will be available only in approxi-

mation. According to Ellison, however, use of the inverse of Equation

(2-37)into Equation(2-39) followed by direct introduction of Equation

(2-37) into Equation (2-40) suggests a partial cancellation of concomitant

errors, and thus a possibly effective way to bridge the gap between poly-

atomic structure and one- and two-atom structures using valence-bond

theory.

In Chapter V a potential energy surface for the linear system

H--Br--Br will be derived using the diatomics in molecules method.

Classical Mechanical Calculations of Reaction Cross-Sections

The classical mechanical method of investigating reaction cross-

sections is by numerical integration of Hamilton's canonical equations

of motion for the colliding system. If one picks a random set of initial

conditions for the collision of potentially reactive molecules, and

numerically integrates the equations of motion to obtain the complete
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trajectories of the particles involved, then by simply counting the

number of trajectories that lead to reaction and noting the solid angle

into which the products are scattered, one can obtain the reaction cross-

section. If all interactions are previously known, then the calculation

of individual trajectories is as exact as classical mechanics can be.

Wall, Hiller, and Mazur (43-44) used this approach to calculate

reaction probabilities for the system H2 + H _ H + _. This calculation

clearly points out the complexities of this approach. For the system of

three hydrogen atoms there are eighteen independent dynamical variables,

six of which can be eliminated by requiring the center of mass of the

system to be at rest. The total number of equations can be reduced further

by taking into account the fact that the total energy and the three total

angular momenta must be conserved. Wall and his colleagues deliberately

retained twelve equations so that they could check the accuracy of their

numerical integration. They assumed a London-Eyring-Po!anyi (38) form

for the potential-energy and integrated Hamilton's equations with the aid

of a computer. This integration assumed that qi and Pi' the position and

momentum variables, respectively, corresponding to the ith degree of free-

dom, remained constant, at some average value, over time intervals At

(2 x 10 -16 seconds in their calculations; this is much less than the

period of vibration of a hydrogen molecule, and it was found that both

the total energy and angular momentum were accurately conserved for this

value of At).

In the first work of Wall, Hiller, and Mazur, H + H 2 were held

collinear and the initial conditions were varied systematically. In the

second paper the atoms were no longer constrained to move in a straight
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line_ but were restricted to a single plane. The starting conditions

(rotational_ vibrational, and translational energies) were chosen by a

weighted random method (Monte Carlo method). The first paper showedthe

reaction probability to be a complicated banded function of the energy

of the reactants. Unfortunately_ in the second calculation very little

reaction took place (6 out of 700 approaches led to reaction) so that

the results did not achieve a statistical significance.

Wall and Porter (45) returned to the original pattern of calcula-

tion (collinear reaction, systematic variation of reactant energies) with

an altered H + H 2 potential-energy function. The new function (46), more

empirical than the London-Polanyi-Eyring function_ had a smooth potential

barrier without a "basin" which characterizes their earlier surface. Re-

moval of the "basin" had the effect of eliminating the marked oscillation

in reaction probability, characteristic of the earlier surface.

Studying the same reaction and performing more extensive calcula-

tions, Karplus_ Porter, and Sharma (47) found the rate constant at lO00°K

loll -1to be ll x cm3 mole -1 sec _as compared to an experimental range of

-i
ll to 22 x l0 ll cm3 mole -1 sec . They used a semiempirical potential-

energy function (48) that is probably the best available at present for

the H + H 2 interaction. An IBM 7094 computer was used to integrate the

equations of motion. The initial rotational and vibrational energies of

the reactant molecules were set, along with the value of the initial rela-

tive energy of approach, and a Monte Carlo scheme was used to average

over the molecular orientation_ vibrational phase, and the impact para-

meter. The reaction cross-section was found to be essentially the same

for the first six rotational states of the reactant molecule, i.e., for



31

about 95 percent of the reactant molecules. This is a significant dis-

covery since it eliminates the need for varying the initial rotational

energy and hence the numberof required calculations is reduced to only

one-sixth of the numberoriginally expected. The generality of this

phenomenonwith regard to reactions other than H + H2 _ H2 + H, will be

discussed later.

Noteworthy work in classical mechanical treatments of bimolecular

exchange reactions by Bunker (49-51) has treated the general case for

reactions of type A + BC_ AB + C by varying the reactant masses, the

type of interaction potential, and the exothermicity. The motion was

restricted to a plane. On the basis of i0,000 calculated trajectories,

the following general conclusions were reached:

(i) The energy of reaction is converted predominantly into internal

excitation of the product.

(2) A normal reaction is one in which AB is most likely to recoil

backward along the approach line of A.

(3) The final rotation of AB absorbs as large a fraction of the

initial orbital angular momentumas is allowed by conservation of energy.

Bunker also madecalculations for the three-dimensional case. The

treatment of Bunker and Karplus differed mainly in the averaging over

initial conditions. Karplus, as stated above_ set the initial values of

the rotational and vibrational energies of the reactant molecule and the

value of the initial energy of approach. He then averaged over the im-

pact parameter and vibrational phase and orientation of the reactant mole-

cule by a Monte Carlo method. Bunker, however, averaged over all the

initial conditions by Monte Carlo techniques. The advantage of Karplus'
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approach is that the reaction cross-section can be plotted as a function

of the vibrational and rotational energies of the reactant molecule and

the relative energy of approach. This reaction cross-section can then

be fed into Equation (i-ii) and the rate constant obtained by numerical

integration. Any distribution function can be used, either the Maxwell-

Boltzmann distribution or someperturbed distribution function. Bunker's

method, however, requires that the distribution function be incorporated

into the Monte Carlo segmentof the calculation. As a result, a new set

of calculations must be madeif the distribution function is changed.

Nevertheless, Bunker's approach has the advantage of requiring fewer tra-

jectory calculations for the determination of a single reaction rate con-

stant.

Collision Complex

In analyzing the details of collision, Karplus and his colleagues

found no evidence of their potential energy hypersurface (48) of a H-H-H

complex. The collision time was approximately 3 x 10 -4 seconds, which

is roughly the time required for an atom to make a single traversal of

the field-of-force of the molecule. Reaction was found to be favored

when the three atoms had a more linear configuration upon collision.

These observations were in essential agreement with those of Wall, et al.,

(43-44) and with the crossed molecular beam experiments of the D + H2

DH + H reaction, by Datz and Taylor (52).

Comparison of Two-Dimensional and Three-Dimensional Calculations

A classical analysis of the reactive collisions of K and CH31

(K + CH31 _ KI + CH3) was performed by Karplus and Raff (53-54) to aid

in the elucidation of crossed molecular beam studies of this system by
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Herschbach and his co-workers (55-56). The methods of calculation were

similar to those used in the study of the H + H2 _ H2 + H reaction (47).

In the first paper (53), a comparison was made between the results calcu-

lated from a formulation that restricts the motion to a plane and one that

treats the complete three-dimensional motion. The partitioning of the

exothermicity of the reaction (22 kilocalories per mole) among the pro-

ducts and the total reaction cross-section were found to be similar in

the two- and three-dimensional treatments. Other reaction attributes,

however, were found to require a three-dimensional calculatiom for an

accurate evaluation. Tmese were the form of the differential reaction

cross-section and the final-state angular-momentum distribution.

Elucidation of the Potential Energy Hypersurface

Tae potential-energy function used by Karplus and R aff (53) was one

used by Bunker (49) in his two-dimensional treatment of the same reaction.

Ai_hough the product-energy distribution was in reasonable agreement with

the experimental estimate (55) (approximately 90 percent of the energy of

reaction appears as rotational-vibrational energy of KI), the result ob-

tained for the total reaction cross-section was in serious disagreement

with the experimental data (400 _2 as compared with experimental value of

7 _2). By an examination of the dependence of the total reaction cross-

section on the form of the interaction potential, it was found that the

over-estimate of the long-range attraction between the K atom and the CH31

molecule was the probable source of error and that introduction of an

appropriate three-body attenuation term into Bunker's potential-energy

function led to more reasonable results.

Later (54), Karplus and Raff calculated the differential cross-
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section for the K + CH3I _ KI÷CH 3 reaction for four types of potential-

energy hypersurfaces: (A) the modified Bunker surface used in their first

paper (53); (B) a potential-energy function identical to A, except for a

difference in the term designed to attenuate the K-I attraction when the

CH 3 radical is near; (C) a potential-energy function similar to A, except

for a different K-CH 3 repulsion term; (D) a special function designed to

maintain some CH31 attraction upon the approach of K, so that some sem-

blance of a collision complex will result. They found that potential

functions A and B gave results in reasonable agreement with experimental

data on the differential cross-section (56). Potential function C gave

a differential cross-section too peaked in the backward direction, while

surface D gave results in complete disagreement with the three others and

with experiment by yielding an essentially uniform center-of-mass differ-

ential reaction cross-section.

Although these comparisons between theory and experiment provided

some information concerning the form of the potential energy hypersurface,

Karplus and Raff felt more refined measurements and more general calcula-

tions are required before a definite analysis can be completed.

Classical mechanical calculations have also been used to elucidate

the potential energy surface for certain exothermic reactions involving

hydrogen and the halogens. The evidence from infrared chemiluminescence

studies (6,10,57,58) indicates that the reactions H + X 2 _HX + X (H = H

or D_ and X = CI or Br) channel the heat of reaction preferentially into

relative translation and possibly rotation of the products, rather than

into vibration. This behavior sharply contrasts with that of the reactions

X + M 2 _MX + M (58) and M + RX _MX + R (56) (M is an alkali metal, R is
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an alkyl radical, and X is a halogen atom) for which a major part of the

heat of reaction goes into internal excitation (vibration and perhaps

rotation) of the products. Evans and Polanyi (59) linked the behavior

of the latter reactions to a type of potential-energy surface for linear

reaction, which can be called a purely "attractive" surface (i0). On an

attractive surface the heat of reaction is liberated (potential _ kinetic

energy) along the coordinate corresponding to the approach of atom A to

within a normal bonding distance of BC. By contrast, one can conceive

of a purely "repulsive" surface, according to which the entire heat of

reaction is liberated along the coordinate which corresponds to increasing

separation of the products, AB + C. Of course, the most probable path

across the potential-energy surface is not a strictly rectilinear one,

in which rAB decreases with rBC constant, and then rBC increases with

rAB constant. The "attractive" versus "repulsive" criterion is used simply

as a means of characterizing the potential-energy surface.

The behavior of the H + X 2 reaction was accounted for in terms of

a repulsive surface (6,8,10,57,60) by Nemeth, Polanyi, and their colleagues.

The potential-energy surface used in their work was based on an empirical

extension of the London-Eyring-Polanyi-Sato surface, and the atoms were

constrained to move in a plane. In order to save computer time, initial

conditions were varied systematically. Since the product energy distribu-

tion was very insensitive to the initial conditions (this is apparently a

characteristic of the repulsive, but not of the attractive surface (60))

statistical averaging was not essential.

A gradually repulsive surface which is a modified London-Eyring-

Polanyi-Sato potential-energy surface (60) gave on the average approxi-
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mately three percent of the heat of the H + CI 2 reaction as vibration

for planar motion, roughly in agreement with experiment (57). Further-

more, the surface did not possess an unreasonably prolonged HCI-CI inter-

action in comparison with experimental data on the HCi-Argon repulsion (61).

Not all the potential-energy surfaces which imply a purely "repul-

sive" interaction between the product molecules lead to a channeling of

the heat of reaction into relative translation. It has recently been

pointed out (60,62) that a repulsive surface which has a sufficiently

steep outrun will lead to a substantial degree of vibrational excitation.

Quantum Mechanical Calculations of Reaction Cross-Sections

In comparison to the many classical mechanical treatments of

bimolecular exchange reactions, relatively few reactions of this type

have been studied quantum mechanically. As mentioned earlier, the calcu-

lation of reaction cross-sections by classical mechanics is quite time

consuming, since the various molecular orientations and impact parameters

(nonenergetic initial conditions) require the investigations of a large

number of collisions. On the other hand, quantum mechanics offers an

alternative method of averaging directly over the nonenergetic initial

conditions. A new problem is encountered, however, in the form of the

highly complicated Schroedinger equation governing the nuclear motion.

Earlier Treatments

One of the earliest quantum mechanical studies was made by Golden

(63) who regarded both reactants and products (including electronic degrees

of freedom) as different states of the same quantum mechanical system

corresponding to different regions of configuration space. He then
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approximated the transition probability between these states by the first

order time-dependent perturbation theory of Dirac (64). Using the Born-

Oppenheimerseparation (27) to uncouple the electronic and nuclear motions,

Golden obtained an explicit expression for the reaction rate in terms of

the reactant and product state functions and a "perturbing" interaction

between them. He also showedthat the two above approximations enable

the deduction of:

(i) the adiabatic hypothesis;

(2) the dependenceof the reaction rate upon the concentration of

the reactants;

(3) the condition for a vanishing reaction rate_ which is equivalent

to the statistical mechanical condition for equilibrium; and

(4) the dependenceof the chemical reaction rate upon the tempera-

ture.

Golden and Peiser (65) applied the above theory to the reaction

Hi + Br _HBr + H at temperatures around 500°K. For the complete inter-

action potential of the reacting system_they used a simplified London-

Eyring-Polanyi type surface. The "perturbed" interaction appearing in the

expression for the transition probability is the complete potential minus

the H2 intramolecular interaction.

Now_the reactant and product state functions essentially vanish

except for configurations in which the Br - H (A - B) and H - H (B - C)

distances are in the neighborhood of their equilibrium values. Thus, it

was necessary only to consider the behavior of the "perturbing" potential

corresponding to this "equilibrium" configuration_ so the "perturbing"

potential was replaced by its expansion around the equilibrium distances.
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Then, since the H - Br (A - B) and H - H (B - C) distances were

essentially the equilibrium values, the interaction between the outer

atoms Br and H (A and C) depended essentially upon the angle ABC. To

simplify calculations, Golden and Peiser crudely approximated the coulom-

bic and exchange integrals QAC and JAC' by constant values %% and %c
Since the London-Eyring-Polanyi potential usually relies on the increase

in JAC _ upon the approach of A to BC} to produce the activation barrier,

this was a significant modification. Since the reaction H 2 + Br _ HBr + H

is highly endothermic, however, the overall activation barrier was not

seriously affected.

The reaction rate for H 2 + Br -_Br + H did not appear to be sensi-

tive to the choice of JAC and QAC" The rate was far more sensitive, how-

ever} to the choice of the fraction of coulombic binding, X. Corresponding

to X = O} the calculated rate was 10 -4 cc mole -I sec -I and then decreased

•. _ 10-6 -],,,onotonm_all_ with increasing X until} at X = 0.3, it was cc mole -

-i

see . Because of the extreme sensitivity of the perturbation treatment

to the choice of X, Golden and Peiser never decided on a reaction rate.

Several other results were derived} however} which were not sensi-

tive to the assumed fraction of coulombic binding. It was found that the

variation of the absolute rate with temperature} as calculated at 500°K,

agrees well with the observed variation. Surprisingly} approximately 95

percent of the rate of reaction appeared to come from those hydrogen mole-

cules in the first excited vibrational state. Furthermore} the distribution

of the initially formed hydrogen bromide molecules were found to be repre-

sentable by a pseudo-Boltzmann distribution function with a "rotational

temperature" approximately one-half the initial temperature.
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Reactions of the same type as above (X + H2 _HX + H, where X is

Br or CI) were studied by Bauer and Wu (66). For mathematical simplifica-

tion, the reactive collisions between H2 and X were treated as adiabatic

and collinear. Furthermore, since the activation energy E is empirically
a

of the order vibrational rather than rotational quanta, the authors

assumed that reaction involved an interchange of translational and vibra-

tional energy.

Beginning with the above assumptions, Bauer and Wu calculated the

of formation k@ of short-lived activated states H2X# and then multi-rate

plied k_ by the probability _ of passing from the activated state into the

product state. The resulting product was said to equal the rate constant

k for the overall reaction. Assuming about equal probabilities of the

system in the state H2X# going back to the initial state or forward to

final state, K was set equal to one-half. A comparison of k = ½k#the

was then made with simple collision theory, or

(2-48)

where Z is the statistical collision number and P is the steric factor

(67). The predicted steric factor resulting from the comparison was

about 8 x 10 -3 for both reactions (X = CI, Br); this figure is dis-

appointly low.

Bauer and Wu also calculated the lifetime of the activated complex

-12
to be about 5 x i0 seconds. As this corresponds to the time required

for i0-i00 vibrations, this result is in total disagreement with classical
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kinematics, which predicts a collision lifetime of the order of a single

vibration.

By using a high-speed computer, Mazur and Rubin (68) attemoted to

calculate the average quant_n mechanical probability of the reaction

A + BC _AB + C for collinear collisions at a temperature T when BC is

initially in its ground or first excited vibrational state. The average

refers to the average over the distribution of the relative momentsof

collisions between A and BCat temperature T. These authors used a pro-

cedure, involving the numerical solution of the time-dependent Schroedinger

equation, of sufficient _enerality to allow the use of any three-atom

potential energy surface. To save computer time, however, the surface

actually used was a highly simplified one involving three separate plateaux

(a reactant, an activated complex, and a product plateau). In the numer-

ical procedure, the motion of a wave packet across this surface was

analyzed. For comparison, a classical investigation of the reactinz system

was madefor the samepotential-energy surface. Whenthe reacting masses

were all set equal to that for hydrogen, the classical reaction-probability

was five times the quantumreaction-probability.

The immediate conclusion from the above results might be that

classical mechanics is inapplicable to chemical reactions, or at least

those involving light masses. It must be recalled, however, that the

simplified potential-energy surface involved finite discontinuities between

the plateaux, whereas actual potential-energy surfaces are thought to be

uniformly continuous. Thus, the work of Rubin and Mazur should be repeated

for more realistic potential-energy surfaces before any conclusions are

drawn concerning the validity of classical mechanics with respect to



41

collisions of the type A + BC_AB + C.

Mortensen and Pitzer (69) carried out a n1_merical solution of the

time-independent Schroedinger equation for the reacting system H + H2

H2 + H. Employing a realistic potential-energy surface of the London-

Eyri_-Polanyi-Sato type, they calculated the transmission coefficient_

K.., for several total energies and several values of the initial andmj

vibrational state, i and j. At first, strictly collinear collisions

were considered, reducing the Schroedinger equation to a two-variable

partial differential equation. Later, s small angle bending term was

added to the Hamiltonian and the corresponding transmission coefficients

were calculated. The results obtained by Mortensen and Pitzer are pre-

sented in Table i, with Kij tabulated versus i, j, and the total energy

E for collinear collisions with and without bending corrections.

Table i.

E(kcal) i j

Transmission Coefficients at Various Total Energies

K. .

With Bendin_ Correction Without Bending Correction

i0 I i 0.140

ii i i 0.654

14 i i 0.999

17.5 i i 0.967

20 i i 0.762

20 2 1 0.148

20 i 2 0.151

20 2 2 0.360

o.oo586

O. 903

From these results they concluded that it was necessary to consider the

bending motion in the reactive configuration_ especially at low energies.
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Recent Contributions

All of the previously discussed quantummechanical investigations

of bimolecular exchangereactions have included approximations with resoect

to the nuclear motion. In recent years, several complicated treatments

(70-71) have accounted more rigorously for the multi-dimensionality of'

the reactive collisions. For the most part, these efforts were executed

in the formalism of the quantumtheory of collisions (25).

In studying the reactive collisions of H + H2 _ H2 + H, Tang (70)

employed both the distorted wave Born approximation and the perturbed
.

stationary state approximation to derive expressions for the differential

reaction cross-sections. Becauseof the thermal neutrality of the above

exchange reaction, Tang intentionally omitted the possibility of vibra-

tional excitation from the formulation but did allow for the possibility of

rotational excitation.

Included in the formulas for the cross-sections were six-dimensional

transition integrals , a few of which were evaluated by a high-speed com-

puter. Unfortunately, about forty hours of computer time were required to

evaluate only one of these six-dimensional integrals. Thus, to avoid the

use of a prohibitive amount of computer time, Tang calculated only a few

of the transition integrals by six-dimensional integration. He then intro-

duced what he called the "linear" model which ass1_mesthat f_nite contribu-

tions to the transition integral results only from linear configurations

of the reacting system H + H2. Before integrating over the relative

orientation of the H2 molecule with respect to the H atom, a Dirac delta

For the definition of this terminology see Chapter III.



function (72) was included in the integrand of the transition integral to

insure that only the linear configuration madea finite contribution.

This manipulation reduced the dimensionality of the transition integral

from six to two, thus decreasing greatly the time required for numerical

integration. Tang calculated all of the differential reaction cross-

sections of interest by the "linear" model approach and compared the re-

sults with the limited results of the more rigorous six-dimensional pro-

cedure. He then computedthe ratio r of the more rigorous cross-section
cs

to the corresponding "linear" model cross-section. Tang's assumption was

that if all the "linear" model cross-sections were multiplied by r , the
cs

results would closely approximate the results of the six-dimensional inte-

gration procedure.

The results of the analysis just discussed indicated a high proba-

bility of back-scattering, i.e., the product H 2 molecule recoils backward

in the direction from which the initial H atom approaches. Both the dis-

torted wave approximation and the perturbed stationary state approximation

gave the same qualitative results, but the latter method gave values for

the differential reactive cross-sections that were generally twenty times

greater than those obtained by the former method.

The potential energy surface used by Tang was probably the best

available for the H + H 2 system--the potential energy surface of Karplus

and Porter (48) discussed previously in this chapter.

In conjunction with the molecular beam scattering experiments of

Ross_ et al., Suplinskas (71) performed a quantum mechanical analysis of

the reactive collisions K + HBr _ KBr + H. Beginning with the formal

theory of scattering, he developed a chemical analog to the core-core



interaction theory of Greider for nuclear collisions involving rearrange-

ments (73). Suplinskas .... ntua!ly obtained an oo__v_ expre...... for the transl-

tion integral corresponding to the abovereaction that was similar to the

results of the distorted wave Born approximation. A more detailed review

of this approach will be given in Chapter III.

Suplinskas postulated a potential energy function for the KBr + H

system which included no interaction betweenH and K. An attenuation

factor was included in the expression for the potential-energy function

which weakenedthe KBr bond on the approach of H. Morse type intersctio_s

(39) were assumedfor the unperturbed HBr and KBr bonds.

Before evaluating the transition integrals Suplinskas also neglected

the interaction between the product KBr molecule and the departing H atom.

This allowed strict separation of the translational motion between H and

KBr from the vibrational motion of KBr, and enabled the translatiomal

motion to be represented by a plane wavefunction.

Also_ the wave function corresponding to the distorted vibration of

KBr was approximated by a harmonic oscillator wave function with a Hooke's

law constant dependent on the distance between H and Br. This vibrational

wave function resulted from an additional approximation to the perturbed

stationary state approximation.

Aftcr _ __oaining an algebraic expression for om_ti"ansitiom integr_l,

and therefore for the differential reaction cross-section, Suplinskas

integrated over the scattering angles to obtain an expression for the total

reaction cross-section. He evaluated the total reaction cross-section for

various initial translational and vibrational energies and final rotational

and vibrational energies. Only a single initial rotational state (the
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third excited state) for HBr was considered since it was assumedthat the

total reaction cross-section was relatively insensitive to the initial

rotational energy.

For an initial translational energy of 2.0 kcal/mole and an

initial vibrational energy corresponding to the ground state, Suplinskas

calculated the total cross-sections for reaction to form KBr in various

vibrational states. The reaction cross-sections corresponding to the

ground and first excited vibrational states were about 5.0 A2 each, but

the cross-sections fell off rapidly for the more high!_< excited stotes

(0.3 _2 for the fifth excited state and 0.08 _2 for the seventh excited

state). This was expected, of course, since the exothermicity of the

reaction (4.2 kcal/mole) is insufficient to produce KBr in the higher

excited states. For the sameinitial conditions, the distribution of the

reaction cross-sections with respect to the final rotational staten of

KBr showeda somewhatsharp peak at the 70th excited rotationsl state.

WhenHBr was initially in the ground vibrational state, the total

cross-sections into all available states of KBr were determined b,

Suplinskas to be about 37 _2 for an initial translational energy Etr,i of

1.O kca!/mole , lO _2 for Etr,i equal to 2.0 kcal/mole, and about 5.0 _2

for Etr,i equal to three, four_ and five kcal/mole. Suplinskas attributed

the anomalously high values of the reaction cross-section at low values

of Etr,i to the use of a plane wave to describe the relative translational

motion of H and KBr. This gave excessively high values for the exact wave

corresponding to H in close proximity with KBr. At low values of Etr,i ,

and thus at low values of the total energy, the probability that H can be

very close to KBr is negligible, since repulsive forces become dominant at
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close range. The cross-sections corresponding to the higher values of

Etr,i were considered to be in fair agreement with the experimental cross-

section of 32 _2 (19), considering the many assumptions included in the

calculations.
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CHAPTERIII

THEQUANTUMTHEORYOFSCATTERING

In their recent studies of reactive collisions, both Tang (70)

and Sup!inskas (71) utilized the time-independent approach within the

formal theory of scattering. Gerjouy (74) and Lippmann (75) have been

the prime developers of the time-independent theory, while somecrucial

points have been analyzed by Epstein (76). The time-dependent approach,

based mainly on the work of Gell-Hann and Goldberger (77)_ is admirably

reviewed by Wuand 0hmura (25) in their recent text on the quantumtheory

of scattering.

As previously stated, the binary collisions are assumedto occur

independently, uninfluenced by any effects external to the colliding mole-

_ The _-_ _ ....... _

therefore not an explicit function of time, and the time-dependent and

time-independent formalisms lead to identical expressions for the reaction

cross-sections. Because it is less complicated conceptually: the time-

independent approach will be used in the present study.

Explicit expressions for the reaction cross-sections derived in_

this chapter will be used for actual calculations in Chapter V. The

development herein closely follows that of Suplinskas (71) and is included

as a convenience to those readers unfamiliar with the quantumtheory of

collisions.
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The Hamiltonian Operator

Consider the reactive collision A + BC _ AB + C which is dia-

grammed in Figure i. For discussion purposes, it is convenient to begin

with a classical mechanical description of the collision and to convert

later to quantum mechanics by using the appropriate postulates (78).

The Classical Mechanical Hamiltonian

In classical mechanics the time-independent Hami!tonian for the

motion of three particles A_ B_ C of masses mA_ mB, mc_ respectively, is

Here, the coordinates XA, _, ..., zC _..............._ o_rt_inn eonr_instes of

the particles A, B, and C in a reference frame stationary with resoect to

an observer, i.e., the laboratory frame. The symbols PxA''''' PzC are the

linear moments conjugate to these coordinates (79). The potential-energy

function V is usually a function only of the three imteratomie distances,

rAB , rAC , and rBC , so

(3-2)

where
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Expressions similar to Equation (3-3) define rBC and rAC.

The canonical equations of motion are given by (80)

3-_)

= -- jH/oIZ L

and

& : _H/j4- (3-_)

,}_ : jH/J&;

If a classical description of the collision is desired, Equations (3-14)

and (3-5) can be integrated to yield XA_ YA' "''' ZC and PXA' PYA _ "''_

PZC as functions of time, provided the initial values are specified for

these variables.
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Coordinate System for Initial Stage of Reactive Collision. When

considering the collision of a molecule BC with an oncoming atom A, it

is convenient to use a different set of coordinates (80). The new set of

coordinates are:

i. The center of mass coordinates of the entire system

o The components of the vector between atoms B and C_ rBC

X_,.:= Xs - ×_ _-7)

r/_<: _/;_ "7<:

- Z --Z
Re. B c.

3. The components of the vector R between atom A and the center

of mass of BC
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i7. A ( "'_"/.+ '_<."#<)/C'°'_+,>,<j

/7z = zA - 0% z,_ ,- ,>,,z<_)/(_,,,_+-,.>,_)

These new coordinates are such that Hamilton's equations_ Equations

(3-4) and (3-5), are invariant under the transformaLion. Also_ by select-

ing a reference frame in which the center of mass coordinates remain con-

stant: i.e., the center of mass system: the new Hamiltonian takes the form

(so)

k.p-:)

where

/x_ - % t _>,,_+-,-,,<_)/( ,,,, _%, ,,,<_) (3-zo)

,,<_ -- j,,,_,,,<_/(_,,,+-,.,<) (3-zz)

The symbols PI' P2' "''' P6 denote the momenta conjugate to the coordinates
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•: _3-ts)

respectively.

Coordinate System for the Final Stage of Reactive Collisions. To

keep track of the motion of the products of the reaction A + BC, AB + C:

another coordinate system should be introduced. The coordinate system is

the same as that used in the initial stage_ exceot that the set of vari-

ables used within that coordinate system is changed. In this case_ %he

vector _ is defined as the vector between atom C and the center of mass

of AB. The components of P are



s-J-s)

P -- %- C_% _ %-&)/(,, _,%)
?

and the components of the vector rAB between atoms A and B are

X q!_, = X 4 - ,'_
(3-1i'+)

ZA_ -- Z A -Z a

Then the Hamiltonian governing the motion of A, B, and C can be written

(8o) as

(3-is)

where
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(3-!6)

A

The momenta Pl _ P2 _ "''_ P6 are conju{ate to the coordinates

(3-2_7)

)
- Z

respectively.

Like the coordinate transformations of Equations (3-7) and (3-8)_

Equations (3-13) and (3-14) are invariant under the transformations just
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described.

The Quantum Mechanical Hamiltonian Operators

The following equations represent well known quantum mechanical

postulates (78) for conversion of classical mechanical variables to quan-

tum mechanical operators:

2 : ._ ,J Z-lg)

3-20)

where q is a classical position coordinate and p is its eonju6ate momentuA.

Subjecting Equations (3-9) and (3-15) to the prescription given b/ Equations

(3-19) and (3-20) yields the following expressions for the quantum mechani-

cal operators appropriate to the initial and final stage of the collision:

respectively:

7-/ - j__,_ .,,,_= _, * v(r, 'A_)
(3-22)

Here_
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(3-2!0

Since the potential energy functions and the Hamiltonian operators are the

same,

(3-25)

Schroedinger Equation Appropriate to Initial Stage of Collision

Taking note of Equation (3-21), the Schroedinger equation for the

reactive collision A + BC _ AB + C, can be written as

-f-_= E ? (,t,'..

where Y(R, rBC ) is the total wave function for the system, and E denotes

the total energy of the system. An important boundary condition imposed

on Y(R, rBC ) is the initial asymptotic condition. Since the interaction

between the colliding molecules is negligible for large R, the initial
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asymptotic condition for the wave function can be represented as a product

of wave functions corresponding to the free relative motion between A and

BCand the internal states of A and BC. All molecules are assumedto be

in their ground electronic states so A is regarded as a structureless mass.

The diatomic molecule can be approximated as a rigid rotator, Morse oscilla-

tor (81). Thus, the initial asymptotic condition for _(R,_BC) can be

written as

m°

where YII(SBC, @BC) denotes the spherical harmonic function ocrresponding
i

to the rigid rotation of BC, and Zn.__(rBC) denotes the Morse oscillator
l

function corresponding to the vibration of BC. _The symbols hi, li, and m.1

denote the vibrational, angular momentwa, and Z-component of angular momen-

tum quantum numbers, respectively, for the BC molecule. 0BC and @BC are,

of course, the angular components of rBC in spherical coordinates (see

Figure i). The vector _., the wave vector, has the direction of 7. and
i i

the magnitude (_i/_) v..i

One of the most familiar results of quantum mechanics is that if the

total wave f1_nction is a product of wave functions corresponding to differ-

ent modes of motion, then the total energy is the sum of the separate ener-

gies for these particular modes. Thus_ in the initial asymptotic case

above, the total energy is the sum of the relative translational energy of

approach, the vibrational energy of the molecule BC, and the rotational

energy of BC, provided the ground electronic states of A and BC are taken
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as zero energy.

Schroedinger Equation Appropriate to Final Stage of Collision

The product wave function represents the collision system when the

product molecules have reached such large separations that no intermolecular

interaction exists. To account for all the various probabilities of the

collision results, the post-collision wave function must include the sum

of terms corresponding to molecules which are the products of elastic_

inelastic, and reactive scattering. After the collision has occurred, the

product molecules might still be A and BC, with BC either in a different

internal state or not, or some chemical rearrangement might have taken

place to form, say_ atom C and molecule AB. By visualizing a detector

which can distinguish between different chemical types of molecules and

their internal states, attention can be focused on a single term in the

product wave function representing the particular species of molecule de-

tected.

Consider now the collision leading to the atom C and the diatomic

molecule AB with vibrational quantum number nf and rotational quantum

numbers if and mf. Using Equation (3-22) one can write the Schroedinger

equation as
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As P approaches infinity, the interaction between A and BC vanishes so

that the final asymptotic expression for the total wave function can be

written as

where ® and _ are the deflection angles in the center of mass system (see

Figure 1). The first two factors on the right side of Equation (3-29)

correspond to the relative translational motion of AB and C. Particle

flux is conserved by exp(ikfP)/P_ in which the wave vector kf has the

direction of the final relative mom velocity __v%and the magnitude (bf/_)vf.

f_(@, _), called the scattering amplitude, takes into accountThe factor

the anisotropic scattering caused by the peculiarities of the initial con-

potential energy function. On f_(®, _), the superscriptditions and the

i denotes the set of initial conditions ni, li, mi, ki, and the subscript

f denotes the set of final conditions nf, lf, mf.

The Cross-Section and the Scattering Amplitude

A very important relationship between the differential reaction

cross-section mentioned in Equation (1-8) and the scattering amplitude of

Equation (3-29) will now be presented:
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(3-30)

The derivation of this expression will be omitted since it is rather

lengthy and is thoroughly treated in most standard textbooks on quantum

mechanics (82).

The quantummechanical treatment of the reaction cross-section is

now reduced to the quest for the wave functions, possessing the correct

asymptotic form, of the complete system Hamiltonian. Oncethese _ave func-

are found, the scattering amplitudes f_(e, _) can be obtained bytions

comparing the wave functions, in the limit of infinite P, with Equation

(3-29). Of course, very few wave equations of the type represented by

Equations (3-26) and (3-28) are analytically solvable_ and suitable methods

of approximation must be sought.

It is very difficult to make intelligent and intuitive approxima-

tions with the Schroedinger equation in the form of Equation (3-26) or

Equation (3-28). A more suitable formalism for analyzing the exact nature

of proposed approximations can be obtained by recasting the Schroedinger

equation in the form of an integral equation. This is the approach taken

in the following section, which contains a discussion on the approximate

methods appropriate for exchange collisions of the type A + BC- AB + C.

The Differential Reaction Cross-Section

At this point it is appropriate to present expressions for the

scattering amplitude in terms of the solutions to the Schroedinger equa-

tion governing the collision A + BC _ AB + C. Since extensive derivations
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of the equations that follow appear in manysources (83), no attempt will

be madeto repeat the derivations in the present study. For the purposes

here, the two most important expressions for the scattering amplitude are:

(3-31)

, _+ F'J a,.--"</'F'

and

(3-32)

Here, the function _f is the solution to Equation (3-28) having the

asymptotic condition

(3-33)
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where the factor f(_, _) multiplying the incoming wave function is an

elastic scattering amplitude. The potential functions Ui(rAB , P) and

Uf(rAB , P) are defined as

(3-34)

and

(3-35i

where VAB and VBC are the ground state potentials for molecules AB and

BC, respectively.

Using Equation (3-30)7 one can now write

(3-36)

or

-_I_ (3-37)

The remaining task is now to find either of the total wave functions

$_ or Sf. For realistic potential-energy surfaces, exact solutions to
1

Equations (3-26) or (3-28) are practically unobtainable. Thus, an appro-

priate method of approximation must be used which avoids the mathematical
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barriers of the exact problem but still yields physically meaningful re-

sults. Such a method is the perturbed stationary state approximation

originally proposed by Mott (84). This approach was taken by Suplinskas

(71) in his study of the K + HBr _KBr + H reaction but was only discussed

by Tang (70) in his study of the H + H2 _ H2 + H reaction. Chapters IV

and V will demonstrate how the perturbed stationary state approximation can

be applied to the study of a highly exothermic reaction such as H + Br2

HBr + Br.

Perturbed Stationary State Approximation

The perturbed stationary state approximation was formulated by Mott,

Massey, and Bates (84, 85_ 86) to attack those problems involving the slow

collision of an atom, ion, or molecule with another such particle. Although

this method is theoretically rigorous, various approximations must be made

to avoid overwhelming mathematical difficulties. Below is an outline of

the theory as applied to the reactive collision A + BC _ C + AB. First,

however, a discussion of the distorted wave method will be given because

of its prominence in some of the previous applications of the perturbed

stationary state approximation.

The Distorted Wave Method

Sometimes it is possible to obtain an exact solution to Equation

(3-2_ if some part of the potential can be neglected. For instance, since

the Born-Oppenheimer separation has been assumed, the complete potential

for the exchange reaction A + BC _AB + C can be written as



65

The two-body potentials VAB, VBC, VACare identical to the potentials for

the isolated dlatomic molecules AB, AC, and BC, respectively. The three-

body potential VABC is defined as the deviation of the sumof the two-

body potentials from the complete potential V when all three atoms are in

the samevicinity.

Now, suppose the three-body interaction term VABC can be partitioned

into two parts as

VA8c = + Vb (3-39)

Here, it is assumed that Va is predominantly an interaction between A and

@

B, while Vb is primarily an interaction between B and C.

+ ...*

Now, define the function Xi(rBC, _) as the solution to

with the asymptotic condition given by Equation (3-27).

the function k;(_AB, _) as the solution to

Further, define

(3-41)

with the asymptotic condition given by Equation (3-29). Then, it has

been shown by Greider (73) that, to a first order approximation, one can

write



66

(3-42)

This is known as the distorted wave method and is particularly useful if

exact solutions to Equations (3-40) and (3-41) can be found.

The "Linear" Model of Tang

Even if the exact wave functions _ and _f were known, it would be

practically impossible to evaluate the integrals of Equation (3-36) and

(3-37) due to the unfactorable six-dimensional integrands. Thus, some

reasonable approximation designed to simplify this integrand integration

would be extremely welcome.

Using the distorted wave method, Tang (70) assumed that both k_
l

and kf essentially vanished unless _AB= _ - ep and _AB = _ + CP (see

Figure 1). Thus, he replaced the element of volume d3_AB in Equation (3-4_

2
with C 6(_ - _p, 9AB), 6(_ + ¢p, ,AB) _AB drAB" Here, 6(a, b) is a Dirac

delta function defined as

(3-43)

and C is a constant. Tang discovered that this model resulted in consider-

able simplification of the integral of Equation (3- 4_. The parameter C

i
was adjusted so that qf(®, _) agreed with the results of a long, tedious,

six-dimensional integration of Equation (3-42) by high-speed computer.

The "Two-Dimensional Interaction" Model of Suplinskas

Suplinskas (71), in his study of the K + HBr _ KBr + H reactive
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collision, neglected the interaction between the potassium and the hydro-

gen atoms, thus reducing the potential_f in Equation (3-35) from a three-

dimensional to a two-dimensional function. This approximation also im-

plies the unhindered rotation of EBr in the proximity of H. Thus, consi-

derable simplification of Equation (3-37) resulted from the use of this

model.

The "Linear Complex" Model

The "linear complex" model will be applied to the study of triatomic,

exothermic, bimolecular reactions in the next chapter. It is based on the

same assumption as the "linear" model of Tang; that is, the chemical forces

tend to align the system A + B + C as A approaches BC. When the AB inter-

atomic distance becomes approximately that of a free, unperturbed AB mole-

cule, the three atoms ABC are assumed to be rigidly locked in a linear

configuration. Since the complicated electronic and nuclear motions lead-

ing to reaction are assumed to occur when the atoms are in this compact

arrangement, the effective potential of the "reactive" configuration is

VL(rAB, P), the potential-energy function for three atoms constrained to

a straight line. Thus, as will be shown in the next chapter, it should be

valid to replace _ in Equation (3-37) by Xf, the solution to the problem

[ + K^8+ VL] :EX (3-44)

Here, Kp is the relative translational kinetic energy operator -('_2/2p,f)

2 (_:_2/2mAB) %/2 , and E
Vp, KAB is the vibrational kinetic energy operator rAB

is the total energy of the colliding system. The asymptotic condition for
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Xf is Equation (3-33).

The guiding concept of the perturbed stationary state approximation

is that the relative translational velocities of the colliding aggregates

are extremely slow comparedto the internal motions of the particles.

Thus, the relative motion of AB and C is assumedto be adiabatic with

respect to the vibrational motion of AB, and Xf will be most appropriately

expandedin terms of the molecular wave functions Zn(_AB; P) which are the

eigenfunctions, for fixed P, of

zC 8; P) (3-,5)

Cn(P) denotes the internal energies of AB at a given P_ and the Zn(_AB; P)

form a complete set of functions of rAB for any fixed P. Asymptotically,

for large P,

where En, _n(_AB) are the energy and eigenfunction of the unperturbed mole-

cule AB in the state n. The boundary conditions for the Zn(_AB ; P) are

the same as those for the Cn(_AB ).

Since
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(3-48)

where UI,L(rAB , P) is the linear configuration form of the three-dimen-

sional potential Ui, Equation (3-45) would be the Schroedinger equation

for the _n(_AB) functions if the atom C were sufficiently removed from AB

to cause Ui,L(rAB, P) to vanish. This perturbation of AB by C gives the

perturbed stationary state approximation its name, although the perturbing

potential Ui, L is generally too large to handle by straightforward applica-

tion of perturbation theory (87).

If Cn(P) and Zn(TAB; P) can be obtained by solving Equation (3-45)_

then the function Xf may be expanded in terms of the Zn(_AB; P) as

h"

(3-49)

Substituting Equation (3-49) into Equation (3-44), multiplying by Zn(rAB; P)

and integrating over rAB _ yields

(3-5o)

where the C , are the operators
nn

(3-51)
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The functions ZnQrAB;'_ P) can be appropriately named the static field

diatomlc wave functions since they represent the rotational and vibrational

motion of AB which is stationary relative to the atom C. On the other hand,

the functions Gn(_ ) should be called the translational motion coefficients

since they account for the motion of C relative to An.

In Chapter IV, suitable approximations will be made to facilitate

the solution of both Equation (3-45) and Equation (3-50) for the case of

the highly exothermic reactions of the type A + BC -_AB + C.
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CHAPTERIV

DETERMINATIONOFREACTIONCROSS-SECTIONS

FC_TRIATOMIC,EXOTHERMICREACTIONS

Perturbed Morse Oscillator Method

As mentioned in the last few paragraphs of the previous chapter,

the wave function of Equation (3-44) will be applicable to the method

presented herein for determination of the reaction cross-sections. The

discussion in the present chapter will be concerned first with obtaining

the solution s

Zn(rAB,P ) to Equation (3-45). Even though the variable P

is treated as a parameter in the perturbed stationary state method, the

functional complexity of VL(rAB,P ) discourages an analytical attack on

Equation (3-45). On the other hand, a direct numerical procedure, such as

the Numerov method (88), would consume a considerable amount of computer

time since the solutions Zn(rAB,P ) are required for many closely-spaced

values of P. A possible answer to this dilemma could lie in the affinity

of atom A for B. In highly exothermic reactions A + BC -.AB + C, one might

expect the A atom to remain tightly bound to the B atom even when C is in

fairly close proximity. A recent semiempirical calculation (9) of the

potential-energy surface for H + X2 _ HX + X (where X = F, C1, Br, and I)

indicated that this was the case. Furthermore, even when the distance be-

tween B and C approached zero (that is to say, P -.0), the function

VL(rAB,P ) still re ained the Morse function form shown in Figure 2. Thus,

the standard perturbation theory for eigenvalue problems in quantum me-

chanics can be made applicable to the solution of Equation (3-45) in the
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Figure 2. Perturbed AB Interaction When C is in Close Proximity.
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manner to be outlined below.

The magnitude of VL(rAB,P) for small values of P is such that these

configurations are classically inaccessible. In the perturbed stationary

state approximation, this phenomenon should be manifested by high values

of the eigenvalues Cn(P) when P is small.

"Linear Complex" Model Wave Function

From Equation (3-48) it is seen that, for sufficiently small-valued

Ui,L(rAB,P), ordinary perturbation theory (87) could be applied easily and

directly to the solution of Equation (3-45). The zero-order wave functions

required in the calculation would merely be the solutions Cn(_AB ) of Equa-

tion (3-4_. However, as mentioned in Chapter IV, the interaction Ui, L is

seldom negligible compared to VAB, and_ based on the work of Ellison (9),

this seems to be the case for several exothermic reactions.

Partitioning of the Potential-Energy. Perturbation theory can be

made applicable to the solution of Equation (3-45) by taking a different

approach. As a beginning, the potential-energy function VL(rAB,P ) should

be partitioned into

v,. p) -- %, p), % p) (_.-1)

where

(4-2)

and
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(4-3)

For constant P, VM(rAB,P ) has the form of a Morse potential with P-depen-

dent parameters, and since the Schroedinger equation for a Morse function

oscillator has been solved by ter Haar (81), the solutions to the boundary

value problem

(4-4)

...._

( r.. ; p) : o w, er (4-5)

z,,(qs;p): o I.,uk,m FAe = _ (4-6)

can be obtained at every value of constant P from ter Haar's solutions.

The zn ;P) can be used as zero-order wave functions in a second-order

perturbation calculation of the solutions Zn(_AB;P ) of Equation (3-45).

The physical meaning of the parameters D(P), E
rAB(P), and Um(P ) is

indicated in Figure 3, which depicts a typical curve of VL(rAB,P ) at con-

stant P from Ellison's treatment of H + Br2 -HBr + Br (9).

Assuming that VL(rAB,P) retains definite Morse curve features for

exothermic, triatomic reactions in general, it should be possible to

partition the potential-energy surface for a large number of these reac-
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tlons. Furthermore, proper adjustment of the parameters D(P), a(P),

r_(P), and Um(P ) can render Vp(rAB,P ) negligible compared with VM(rAB,P ).

Very good values for UM(P), rEB(P), and D(P) can be obtained by reading

directly from the plot of VL(rAB,P ) versus rAB for fixed P. The parameter

a(P) can then be calculated from points on the VL(rAB,P ) curve by the

relat ions hip

+ J vL( sje)-- D(PJ
-!

a(e) -
- r (p)_8 A8

obtained from Equation (4-3). The plus sign is to be used for points to

E
the right of rAB(P), and the negative sign is used for points to the left

E
of rAB(P). Preferably, the point used in Equation (4-7) should be at some

distance rAB to the left of r_(P). Then the function VM(rAB,P ) will fit

snugly to the function VL(rAB,P) in the region of steepest slope (rAB <

r_) and fairly close to VL(rAB,P ) in the region of more gradual slope

E
rAB > tAB ). Fitting the function VM(rAB,P ) to the function VL(rAB,P ) in

this manner has the effect of minimizing Vp(rAB,P ). If some point at

rAB > r_ is used to determine a(P), the slope of VM(rAB,P ) to the left

of r_ will not coincide as well with that of VL(rAB,P ) as in the former

case. Thus, due to the steepness of the slope in this region, a small

deviation in slope corresponds to a large valued function Vp(rAB,P). In

the limit of large P, the parametric functions a(P), D(P), Um(P), and

r_(P) should approach the corresponding Morse parameters for the unper-
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turbedAB molecule.

The Zero-Order Wave Functions. As mentioned above, ter Haar (81)

obtained an almost analytical solution to the system of equations

(4-8)

which describes the motion of a rigid rotator-Morse oscillator. Here,

rEr is the interatomic distance, _ is the reduced mass, is the equili-

brium interatomic distance_ and D and a are the Morse parameters. Since

the derivation of the solutions to Equation (4-8) is rather lenghty_ the

reader is referred to the original paper by ter Haar (81). In this work

the results will be written down in the form of solutions to Equation

(4-8) as follows:

Oz,,C(,; p) = (p) (_-9)

_, (p) = a _ (n_ + Va) (n_c+b')z
4 (e) 4_(p) +Um(P)+ Ero_:

(4-1o)

mf

where N°nf(P) is a normalizing constant and Ylf(SAB, _AB) is the wave
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function corresponding to the assumed rigid rotation of AB in the field

of C. From standard textbooks in quantum chemistry (89), it is shown

that

(4-11)

mf

where Plf(C°S CAB ) is the associated Legendre polynomial defined as

(q--12)

The radially dependent factor R°f(rAB;P ) is

(4-13)

where

,48
(q._.tq.)
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and

(4-16)

X 3

3!

Here_

(_-17)

Equation (4-16) is the confluent hypergeometric function (90)

o, ,_ (_ _I) X_-
M(_,_;X} = /.+ _X + _(¢+d 2--[.

(k-k8)

4"

for the case where
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The normalizing factors are obtained by numerical integration of

Assuming that the equilibrium interatomic distance r_B(P)_ does not differ
E

greatly from rAB(_), the last term on the right side of Equation (4-10)

can be approximated as (91)

(4-21)

where BAB , _AB' and TAB are the spectroscopic rotational constants (92)

of AB. On the right side of Equation (4-21), the first term corresponds

to the energy levels of a rigid rotor, the second term corrects for the

anharmonicity of a Morse oscillator, and the third term corrects for

centrifugal force.

Improvement of the Zero-Order Eigenfunctions and Eigenvalues. The

results of Equations (4-9) and (4-10) can be used in conjunction with

second-order perturbation theory to correct for the nonvanishing of

Vp(rAB,P ). Only second-order perturbation theory need be considered since

rapid convergence is assured by the careful adjustment of the parameters

E
a(P), rAB(P), D(P), and Um (P) to make Vp(rAB,P ) negligible compared to



81

VM%B,P).

Since the perturbing potential Vp(rAB,P ) does not depend on the

angles CAB , SAB' only the radially dependent eigenftmctions _nf(rAB;P)

where _nf(rAB;P) denotes the orthonormal product N°f(rAB;P ) R:f(rAB;P),

must be subjected to the perturbation treatment. From Equation (4-10),

the zero-order eigenvalues corresponding to the n_f(rAB;P) are

° (p)=_
L%+J v;_ A (P) (tic _-1) - '1" l,l_ ( P,)

A_(p)
(4-22)

which are nondegenerate. Thus, due to the orthogonality of the zero-

order eigenfunctions R°nf(rAB;P), the radially dependent factor of the

static field diatomic eigenfunctions may be approximated by the second-

order perturbation relations for nondegenerate states (9B) as

R,,+(,-,,_;P)- _° ,._'._.(r,e; P) + ,.
._,v;_(P)- _;., v;_(e)

(4-23)

+ E: [e°
,,;,v;I. _/

(P)-_" v;b(P) ]
•4. I

_e (p) V v (p)

[E:.,_;_(P;-E°i,,,,(P)]_
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and the corresponding eigenvalues are

En._,v_(P) = E° Vp (p) + _ .°
_°_,vlb (PJ-_,,;6 (_

(_-24)

where

(_-25)

A prime following a summation symbol specifies the omission from the

summation of the term corresponding to the vibrational state nf. The

symbol N denotes the highest vibrational state included in the set of

--_f(rAB;P)
basis functions R used in the perturbation treatment.

The static field diatomic eigenfunctions and eigenvalues are now

approximated as

(k-26)

and
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(4-27)

where Nnf(P ) is the normalization constant computed numerically from

(4-28)

For convenience, the perturbed vibrational functions will be written

hereafter in the normalized form Rnf(rAB;P) = Nnf(P ) Rnf(rAB;P ).

Approximation of the Translational Motion Coefficients

After ex]_ressions for the static field diatomic eigenfunctions and

eigenvalues have been obtained from Equations (4-23) and (4-24), respec-

tively, they can be substituted into Equation (3-51) in order to determine

the translational motion coefficients Gn(_ ). To avoid mathematical mayhem,

however, some way must be found to uncouple the system of differential

equations represented by Equation (3-50).

analysis of Equation (3-50) begins by operating upon Zn(_AB;P )The

with Vp and then V_ to obtain

(4-29)



84

-@ --D

where 8p is the unit vector in the direction P, and

...@

(4-30)

Since the scalar product of Vp Zn(_AB;P ) and Vp Gn(_ ) within Equation

(3- ) can be written as

the action of the operators Cn,n,(P ) upon Gn(_ ) can be expressed as

(4-31)

(4--32)

Equation (3- ) can now be written
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dP
(4-33)

where

(4-34)

and

(4-35)

Here, the Sn(_) are the eigenvalues E for the unperturbed molecule ABn

in tee state n.

The Coupling Operators. At this point it is appropriate to dis-

cuss the action of the coupling operators Cnm(P ) on the set of functions

R--nf(r;P). For the case of H + Br 2 _HBr + Br, the integrals on the right

t = 3,5 and nfside of Equation (4-33) were evaluated numerically for nf =

0 to nf = 7. The results are listed in Table 2, where
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Table 2. Maximum Absolute Values of the Coupling Integrals

With Respect to P, the Distance Between AB and C

I

nf

3

3

3

3

3

3

3

3

n_f ii ' _-l i2 ' _-2

0 0.08762 O.00532

1 O.31132 O. 07224

2 0.47521 O.08147

3 O.02775 O. 00031

4 1.66391 0.09382

5 0.69823 o.o7182

6 O. 39168 o.04229

7 o.21797 o.02799

5

5

5

5

5

5

,5

5

0 0.07359 0.00388

i 0.17225 0.04211

2 0.19625 0.05223

3 0.31462 0.07616

4 0.56684 0.05179

5 0.98992 0.10017

6 0.33423 0.04718

7 0.22965 0.02994



87

(4-37)

To save space only the maximumabsolute values of I 1 and 12 with respect

to P are reported. As can be seen, noneof the integrals I 1 exceed

1.664 _-l in absolute value, and the integrals 12 are even smaller. Be-

cause the value of k2 - _ (P) will usually exceed lO00 _-2 and since the
n n

maximumabsolute value of _Gn(_)/SP is not expected to be greater than

l0 k-1, approximations to Gn(_) could be obtained from

(4-38)

Of course, it is difficult to evaluate the effect of neglecting

all the coupling coefficients. As in the closely related two-state approx-
4

imation (94-95), the reasonable assumption that coupling can be neglected

is due primarily to mathematical necessity.

Partial Wave Analysis. It is now convenient to restate the

asymptotic condition for Xf (rAB;P) corresponding to the formation of AB

in the state n:
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_@

Now, in Equation (3- ) Xf (rAB;P) has also been written as an expansion

@ -*

in the complete set of functions Zn(rAB;P__..and since

(4-4o)

one can write the following asymptotic equation:

Now the problem of the translational motion coefficients has been

reduced to the task of solving Equation (4-38) subject to the asymptotic

condition given in Equation (4-41). A partial wave method (96) similar

to that for elastic scattering by a central potential is the most straight-

forward procedure. If _ represents the common-plane angle between the

vectors P and kn, then

(q.-q-2)

As P approaches infinity, _ tends to zero and ep and Sp approach ® and _,

respectively (see Figure 1). Expansion of the incoming wave function in
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Equation (4-42) in terms of Legendre polynomials (96) and subsequent use

of the addition theorem of spherical harmonics (97) results in

(4-43)

Also, for very large P, but where ep and _p have not quite become equal

to ® and _, respectively, the elastic scattering amplitude can be ex-

panded as

/ _ _,r (_-44)

where the al's are constants to be determined.

sion can be carried out for Gn*(_):

The same type of expan-

(_-_5)

Here, the functions Ul(knP ) are the solutions to the problem

p_ _t o (_-46)
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(4-47)

where CI and _i are constant for a given i.

Substitution of the above expansions into Equation (4-41), and

utilization of the asymptotic form of uI and the spherical Bessel func-

tion

(4_48)

yields the following expression:

__-;_.--_/_)] (4-_9)

_ _ir

_.;s_.p- _ m---,e.c'-_ c_ [e _(_"p- _'_/_+ _)
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The left- and right-hand coefficients of the ingoing waves must be equal

SO

cs / (4-5o)

or

(4-5_)

and therefore

(4-52)

For large P, Equations (4-47) and (4-48) show that Ul(knP ) differs from

Jl(knP) only by the constant _ which is called the phase shift corre-

sponding to 1.

Equation (4-46) has been studied extensively in the theory of

elastic collisions (98), and the methods of its solution are well estab-

lished for potential functions Un(P ) which decrease faster than 1/P 2 as

P increases.
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Semlclassical Method.

such that

For sufficiently high values of k and 1
n

(4-53)

dP
._. z_._ un; _/

(4-_4)

and for potential functions _ (P) decreasing faster than p-2 as P in-
n

creases, the semiclassical approximation may be employed. Thus, when

the above criteria are met_ the solutions Ul(knP) can be approximated as

(99)

where Po is the classical "turning point" shown on Figure 4, and Kn,I(P )

is defined as

(4-56)

Numerov Method. For low values of k and i, Equations (4-53)
n

and (4-54) will not generally hold true. If the potential function U (P)
n
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decreases faster than I/P2- with increasing P_ one can still obtain the

solutions Ul(kn P) by resorting to the numerical integration of Equation

(4-46). As shown by Mason, et al. (lO0), proper utilization of the

Numerov method (88) can generate values for Ul(knP ) almost as rapidly as

Equation (4-55).

With the Numerov method a linear differential equation of the type

represented by Equation (4-46), or

can be integrated by using the step-by-step relation (88)

(4-58)

i - ,,' "/, ;_) #

Here, the constant H is given by

H --- Xn_l ._ X#,l (4-59)

Of course one needs to know the starting values Yo and YI' but Mason's

group found that this requirement can be avoided provided:

(a) The potential Un(P) has a strongly repulsive core of the type

shown in Figure 4.

(b) The integration is begun at a point just to the left of the
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classical "turning point", P
O

(c) The starting values are taken to be about equal and at some low

value (about 10-9).

This approximate rule was verified by several sample calculations

for the case of HBr - Br.

As will be demonstrated later, the value of the phase shifts, _,

will be unnecessary in light of the model to be used and the calculations

to be made. Hence, no mention will be made of their method of calculation.

The Transition Integral

Combining Equations (3-49), (4-26), and (4-52), the function Xf

can be written as

(4-60)

P)

Now, f_(®,_) is the scattering amplitude for the reaction of A and BC, in

state ni, ii, mi, ki to form C andAB, in the state n (nf, lf, mf, kn).

In the first-order approximation, only that term in Equation (3-49) corre-

sponding to the state n should be included in any calculation of f_(®,@).

This is consistent with the neglect of coupling between different vibra-

tional states.
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Linear Complex Model

Attention will now be focused on the transition integral of Equa-

tion (3-37) which is defined as

These integrals can be evaluated rigorously only by expending many hours

on a high speed computer (70). Thus, it is desirable to attempt to sim-

plify the computation of Ti through the use of some plausible model, such
n

as the "linear complex" model. The "linear complex" model, as mentioned

in Chapter III, assumes that valence interactions rigidly align the con-

figuration of the A-B-C reacting system at interatomic distances close to

E E

rAB and rBC. The applicability of this approach to the system H + Br2 -

Br + HBr will be discussed in the next chapter.

Let Xf represent the function Xf when the system A-B-C is re-

stricted to a straight line, i.e., eAB= _ - 0p and CAB = CP + _' and

(4-62)

Also, because of the nature of valence-type interactions, _f takes on

E
significant values when the order of magnitude of P is about rBC, the

equilibrium bond length of molecule BC, and tends to vanish faster than

p-2 as P increases. Thus, most of the contribution to the integral Ti
n

-@ ___

will come from the region in which _f can be replaced by Xf • It is
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reasonable to assume, therefore, that the integral Ti can be approximated
n

as

(4-63)

Expansion of Wave Functions

Because the coupling between final states was neglected when the

G:(_) were being obtained, the only termtranslational motion coefficients

of Xf of concern in the calculation of Tin is _n(P) Zn(rAB;P ). From

Equation (4-60) the expansion of this term is

_/£I (4-64)

-_-x-
and that of the corresponding term in Y_ is
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(4-65)

Here, the subscript on i and m has the purpose of associating these two

quantities with the orbital angular momenta of the final state. Also,

the initial asymptotic wave function _i can be expanded as

(4-66)

7,<_(__,)i,,(m+;_<)7,_u,,,¢ )y,'u.<,¢)

by virtue of the relation

(4-67)
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Here, M. denotes mc/(m B + toO)l

Substitution of Equations (4-65) and (4-66) into Equation (4-63)

yields the following expression for Ti:
n

T :i_ ZI k--__Y- >__ (_-68)

U_"_®,'_U'/<''<+__, _ _,"'c_,,,,_j&c__,,i

The _bove equation, in conjunction with the relation

(_-69)

can be used as the starting point in the calculation of reaction cross-

sections for specific bimolecular, highly exothermie exchange reactions.
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In the next chapter, the foregoing developmentwill be applied to the

calculation of reaction cross-sections for the reaction H + Br2 -_HBr +

Br.
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CHAPTERV

REACTION CROSS-SECTIONS FOR H + Br 2 -_HBr + Br CORRESPONDING TO

ELLISON 'S POTENTIAL-ENERGY SURFACE

There are several reasons why the H + Br 2 _HBr + Br was selected

to test the methods outlined in the previous chapter. First, infrared

chemiluminescence experiments have yielded information on the manner in

which the energy of reaction (about 41 kilocalories per mole) is distri-

buted among the product molecules. By performing relative intensity mea-

surements of the infrared emission spectra of the H + Br 2 _HBr + Br re-

acting mixture, Polanyi and his co-workers (i0) were able to estimate the

relative values of the detailed reaction rate constants K(nHBr,_Br).

Here_ nHB r and _Br represent the vibrational and rotational quantum

numbers, respectively, of the product HBr. The detailed rate constants

provide information on the relative rates at which reactive collisions are

forming HBr molecules in the state nHBr, IHB r. By summing their results

over all possible rotational states _Br' Polanyi, et al., obtained de-

tailed rate constants _(nHBr) for reaction into the specified vibrational

states nHB r. In Table 3, the values of these rate constants are reported

relative to K(nHB r = 3) = i. The significance of this experiment is that

various potential-energy surfaces for the reaction H + Br 2 _ HBr + Br can

be assumed, and then some preliminary quantum mechanical calculations can

be made until agreement with the results of Table 3 is reached. The most

successful potential-energy function can be used to continue the calcula-

tions until the total rate constant K t is obtained for several temperatures.



102

Comparison of the theoretical rate constant can then be madewith the

experimental value.

Table 3. Detailed Rate Constants for Formation of HBr in Various
Vibrational States; Normalized to the Detailed Rate Con-
stant for the Third Vibrational State (from Infrared
Chemiluminescent Experiments of Polanyi (lO)).

Vibrational Quantum
Numberof HBr

Detailed Reaction Rate

Constant

3 1.00
4 _ rl,

V.U_

5 o.19

6 o.o5

A second reason for the study of H + Br 2 _ HBr + Br is that the

diatomics-in-molecules method of Ellison (41) has been used to derive a

potential-energy function for this system (9). Thus, certain features of

this function can be retained and others varied in order to accomplish the

task of fitting the infrared chemiluminescent data.

A third reason for considering H + Br 2 _HBr + Br is that the light

mass of hydrogen relative to that of bromine reduces by an order of magni-

tude the amount of calculations required to determine the reaction cross-

sections.

A fourth reason is one that deals with the applicability of the

linear complex model to H + Br 2 _ HBr + Br. In his classical mechanical

study of this reaction (60,111), Polanyi noticed that the collinear tra-

jectory was a fairly good description of the typical H + Br 2 trajectory.
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In this reaction_ the light H atom tends to come right up to the nearest

Br atom before the more distant Br atom has time to leave; in other words_

rH_Br 2 decreases first, then rHBr_Br increases--as is implied in a recti-

linear trajectory.

Finally, experimental rate constants are available for H + Br 2

HBr + Br, although the stationary state hypothesis is necessary to extract

these constants from the measurable rate of the reaction H 2 + Br 2 _ 2 HBr

(lO1).

Ellison's Potential-Energy Function

As discussed in Chapter II, the diatomics-in-molecules method of

Ellison's is designed to calculate potential-energy surfaces for simple

molecular systems without evaluating exchange or coulombic integrals or

resorting to adjustable parameters. Instead, one is confronted with the

problem of obtaining experimental energies for the ground and excited

electronic states of all the possible diatomic and monatomic combinations

present in the molecular system.

By beginning with conventional valence-bond structures for HBr,

Br2_ and H--Br--Br, Ellison (9) obtained expressions of the type repre-

sented by Equations (2-24) and (2-25). The resulting _Q and _ were
nm nm

substituted into the secular equation, Equation (2-15), and an expression

for VL(rHBr,P) was obtained.

Valence-Bond Structures

Ellison began with two valence-bond structures for HBrBr, the

canonical (102) structures (1) H-BrBr and (2) HBr-Br. The associated

wave functions can be represented by
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The symbol a represents a is orbital located on the hydrogen atom_ and b

and c denote 4p orbitals on each of the bromine atoms. It shall be under-

stood that the nonbonding is 2 2s2 2p6 3s2 3p6 4s2 3dI0 4p4 electron orbi-

tals should also be written into the determinanta! wave functions. A bar

over an orbital symbolizes 8-spin, while no bar meansu-spin. The notation

I a_c I is shorthand for the determinant

(5-2)

According to Ellison, the diatomics-in-molecules theory is easier

to execute if the wave functions are not normalized_ even for infinite

separation of the nuclei.

Ellison utilized the simplest valence-bond structures for HBr and

Br 2. If A denotes the H atom_ B denotes the Br atom closest to the H atom,

and C denotes the Br atom farthest from the H atom_ the diatomic valence-

bond structures may be written
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Z_ =I_I_ I__I (5-3)

(5-4)

(5-5)

(5-6)

Equation (5-3) represents the ground singlet state, whereas Equations

(5-4), (5-5), and (5-6) represent the excited triplet states for AB;

analogous expressions for the AC and BC molecules are also needed.

The Energy Matrix Elements H
nm-

To illustrate the diatomics-in°molecules theory presented in

AB and AB
Chapter II_ two integrals, HI2 }{22 , necessary for the solution

of Equation (2-15) will now be evaluated. From Equation (2-31)

H p_ / " A _P_j
(5-7)

The primitive function corresponding to the canonical structure _2 is

written
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(5-8)

Operation on Y2 with the antisymmetrizer AABA(AB) results in

A.., AcA,_>_ = (5-9)

Solving Equations (5-3) and (5-4) for a_ in terms of _iAB and _2AB and

utilizing the identity in Equation (5-5), one can rewrite Equation (5-9)

as

(5-1o)

Employment of the diatomic Hamiltonian HAB yields

(5-lZ)

By Equations (5-3) to (5-5), the above expression can be rewritten as

HA8A_8 A_Asl _ _ (5-12)
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Consequent application of the supplementary antisymmetrizer results in

(5-z3)

(_)
Denoting AAB

and (5-2), one obtains

HABAABA(AB) by HAB and employing Equations (5-1)

(5-14)

Reference to Equation (5-7) yields

AB AB A_
(5-z5)

and

_AS (5-16)

where
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(5-17)

By carrying out a similar procedure for each of the other HpQ Yn

and the _ Yn' it can be shovm that

(5-z8)

(5-Z9)

_;- [_ft +_3<_.__r,-_LJ]l_- (5-20)

(5-21)

/-/, _,_-E ,. (5-22)

(5-23)
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All the integrals _Q and_ can thus be obtained by substitution of
nm n

Equations (5-18) through (5-23) into Equation (5-7), and the energy

calculated according to Equation (2-27)matrix elements Hnm

The Overlap Matrix Elements S
nm-

Substitution of Equations (3-1) and (5-2) into Equation (5-17)

results in

(5-24)

In his diatomics in molecules method calculations for the H20 , H3,

+

and H3 molecules, Ellison (103) discovered that the energy results obtain-

ed for neglected overlap between atomic orbita!s, i.e., SpQ = O, did not

differ significantly (less than 0.4 kcal) from those obtained when overlap

between atomic orbitals was included. Thus, to avoid the insurmountable

task of correctly calculating the overlap between atomic orbitals for a

molecule containing bromine atoms, he neglected all the S-pQ. Therefore,

overlap integrals between structures simplified to
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$11 = .S z = _.. (5-25)

The Ground State Energy Curves _i,_-

Since no sufficiently accurate theoretical or empirical potential-

energy curves are available for the ground singlet states of HBr and Br2,

one must resort to more approximately formulated potential-energy func-

tions. The best approximate function available for ground singlet states

is probably the Hulburt-Hirschfelder curve (104), which has been thoroughly

reviewed by Steele, et al. (105). Mathematically, this potential-energy

function is written as

._ ,_ X )Z 3 --AX,DL(, , (5-26)

where

x = _ ( _- _ ) (5-27)

Here, D is the sum of the dissociation and ground state energies for the

diatomic molecule, r is its equilibrium distance, and a, b, and c are
e

experiment_lly determined parameters. The molecular parameters a, A,

D, re, B, _, and T for Br 2 and HBr are taken from the work of Herzberg

(106), whereas the parameters b and c are taken from the work of Hulburt
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and Hirschfelder (104). Table 4 includes these spectroscopic constants.

Table 4. Spectroscopic Constants for Br2 and HBr to be Used in
Ellison's Potential-Energy Function

Molecule al _-i A, sec/A g_ D_ gram  21sec2

Br 2 I. 962 0.6861 31898

HBr i. 809 0.1054 62753

r
Molecule e B, gram A2/sec2 _, gram A2/sec2

Br 2 2.284 0.16071 0.00054

HBr 1.414 16.826 0.449

T, gram A2/sec 2Molecule

Br 2 4.028 x 10 -8

HBr 6.585 x lO -4

It should be noted that Hulburt- Hirschfelder curves are usually

very accurate in the region near equilibrium, and thus should not ad-

versely affect the potential energy for those interatomic configurations

contributing most heavily to the reaction cross-sections.

The Excited State Energy Curves

To circumvent the nonavailability of even semiempirical potential-

energy curves for the excited triplet states of HBr and Br2, Ellison (9)

postulated that the final polyatomic molecule energies should be relative-

ly insensitive to diatomic excited state energies and devised a simple

scheme for approximating these potentials. In elementary valence-bond

theory (102), the ground singlet and excited triplet state energies
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(relative to separate atoms) for the equilibrium internuclear distance r e

are given by the expressions

(5-28)

-- .;--/K (5-29)

where J and K represent the coulomb and exchange energy, respectively.

Taking J = p Ele, where p is a parameter, equal to the fraction of the

total energy that is coulombic at the equilibrium distance, and substitut-

ing into Equation (5-29) gives

£._- £/_ (zt,_i) (5-3o)

The values of p were varied from about 0.i to 0.4. Ellison supposed that

the excited triplet state is repulsive for all distances, and proposed to

represent it by the simple exponential expression

F_ "= ,_x _xp (.- _'r) (5-31)

where Equation (5-30) is utilized to evaluate one of the two constants

and B. For large R, Ellison assumed that the coulomb energy is a negligi-

ble fraction of the total energy. By taking J = 0 at r = 4re (r = 3r e for

Br2) _ Ellison obtained the relationship
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from which the second of the constants _ and B was determined.

Ellison found that modification of the parameter p in the range

0.i to 0.4 causes only small (0-2 kcal) changes in the activation ener-

gies for all of the reactions studied, and that for the specific reaction

H + Br2 _HBr + Br, changing p only causes the downhill slopes to change

in shape. Thus, he settled on the value 0.15 for p since it has often

been assumedthat the total binding energy is approximately 12-15 percent

coulombic (107).

Algebraic Expression for the Potential-Energy Surface

Utilizing all the appropriate expressions presented previously in

this chapter, and employing Equation (2-15), one obtains the following

expression for VL(rHBr, rBr2):

where

-.AS I E Ac 3 E AC I _c
Ha, = .+ , 'i z E,

(5-34)
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_,;. : H).I : EIAB _ _.i EAc; V-.-_3 EAt2. ._. EiBC (5-35)

_I_.;L ! A8 3 E'AB + ,-7Et A( /- 3 ._ A< Be (5-36)"= E, .÷y z , L- ÷2L
.2. I

Here the _nm do not appear since, according to Equation (2-47),

_nl = _I P "_'_, (5-37)

The separated atoms are assumed to be in their ground electronic states,

for which the energies are taken as zero.

Special Features of Ellison's Potential-Energy Surface

Values of VL(rHBr, rBr2) were calculated in the manner just de-

scribed over the region 0 _ rHB r _ 5.0 A, 0 _ rBr 2 _ 7.0 A at intervals

of 0.05 A for each interatomic distance. Figure 5 contains plots of VL

versus rHB r for different constant values of rBr 2. The retention of de-

finite Morse curve features by VL, with respect to rHBr, even when rBr 2

takes on small values lends some justification to the perturbed Morse

oscillator model developed in the previous chapter for bimolecular, highly

exothermic exchange reactions.

Plots of V L versus rBr 2 for various constant values of rHB r are

shown in Figure 6. Note that the Br-Br interaction is greatly distorted

by the presence of the H atom, being only slightly attractive when H
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approaches within 2.0 A of the closer Br atom.

Fitting of Ellison's Potential-Energy Surface to Morse Curves

To apply the methods developed for the perturbed Morse potential

model to the reaction H + Br 2 _HBr + Br, the curves represented in Fig-

ure 5 were fitted as closely as possible to Morse curves. As suggested

in the previous chapter, the Morse parameters D(rBr2) , r_r(rBr2) , and

UM(rBr2) can be taken directly from the plots of VL versus rHB r at con-

stant rBr 2. Then the remaining Morse parameter a(rBr2) can be obtained

from Equation (4-7) by using a value of VL at a point to the left of

r_r(rBr2). The Morse parameters obtained by this procedure for Ellison's

potential-energy surface are listed in Table 5. The point used to calcu-

late a(rBr2) was taken at 1.0 A.

Reference to the original paper by ter Haar (81) reveals a certain

criterion to be met by the parameters A(P), a(P), D(P), r_r(P), if ter

Haar's solution is to be applicable to the Scroedinger equation for the

perturbed Morse oscillator, Equation (4-4). This criterion can be ex-

pressed by the equation

The parameters listed in Table 5 meet this criterion for all values of P.

Simplification of the Reaction Cross-Section

The Reactive Scattering Amplitude

Beginning with Equation (4-68), the "linear model" relation for
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Table 5. Parameters Used to Fit Morse Type Functions VM to VL for
the System H-Br-Br

rBr2_ _ rHBrE,_ D, gramA2/sec2 U, gram A2/sec2 a, _-i

0.0 1.4750 73423 1017876 1.828

0.i 1.4300 72803 847603 1.832

0.2 1.4000 71026 705247 1.834

0.3 1.3775 68319 586393 1.854

0.4 1.3675 64993 487193 1.860

0.5 1.3750 61376 404339 1.863

0.6 1.3850 57760 335026 1.866

0.7 1.3950 54361 276916 1.862

0.8 1.4075 51314 228086 1.892

0.9 1.4175 48686 186961 1.856

1.O 1.4250 46493 152252 1.844

I.i 1.4325 44738 122885 1.841

1.2 1.4350 43437 97936 1.844

1.3 1.4325 42696 76539 1.841

1.4 1.4350 42819 57744 1.849

1.5 1.4325 44526 40289 1.862

1.6 1.4225 49153 22380 1.892

1.7 1.4175 47695 2637 1.844

1.8 1.3925 46695 -16898 2.128

1.9 1.4275 33921 -33202 2.163

2.0 1.4325 28768 -44838 2.241

2.1 1.4325 27149 -52591 2.275

2.2 1.4325 27500 -57357 2.264

2.3 1.4300 29139 -59981 2.387

2.4 1.4275 31668 -61200 2.195

2.5 1.4250 34777 -61595 2.147

2.6 1.4200 38191 -61582 2.111

2.7 1.4200 41649 -61416 2.055

2.8 1.4175 44937 -61240 2.017

2.9 1.4175 48031 -61114 1.974

3.0 1.4150 50716 -61060 1.951

3.1 1.4150 53011 -61074 1.922

3.2 1.4150 54942 -61141 1.899

3.3 1.4150 56500 -61248 1.880

3.4 1.4150 57783 -61379 1.866

3.5 1.4150 58790 -61524 1.855

3.6 1.4150 59596 -61673 1.846

3.7 1.4150 60228 -61818 1.839

3.8 1.4150 60727 -61956 1.834

3.9 1.4150 61122 -62084 1.829

4.0 1.4150 61435 -62201 1.825

4.1 1.4150 61686 -62304 1.823

4.2 1.4150 61886 -62395 1.821

4.3 1.4150 62052 -62475 1.819

4.4 1.4150 62185 -62543 1.818

4.5 1.4150 62297 -62602 1.817
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the transition integral, a convenient expression for the reaction cross-

sections of H + Br 2 _HBr + Br will be derived. First, the notation of

Equation (4-68) should be altered for the sake of symbological brevity.

Let the components of _ in spherical coordinates be symbolized as follows:

P = P, @ = @p, and ¢ = Cp. Likewise, change the notation for the spherical

components of rAB so that r = rAB , _ = @AB' 6 = CAB"

Now since

the vector rBr 2 is tentatively approximated as P because of the smallness

of mH/(_ H + _Br ) . The validity of this approximation will be discussed

later. Incorporating this assumption and the aforementioned notation into

Equation (4-68) gives

T _ = /t, _z _ _ _ < _ % _-(-_i_ (z_,,) .;...,,,i._ (5-4o)
z-_._._
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Integration over the angular coordinates results in

T__ -C_ _ _ Z ______-- -_-_' (5-41)

/ /0

7('__;,,<')(,_C.,,,)Cs_,_,..J

The symbol 6a, b represents the Kronecker delta defined by

,D - C ) __D
(5-42)

,JD I

and the expression I(ii, 12, 13) is shorthand notation for the integral
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(5-43)

, /7 C_:/') z,,,.CP)
_n[. ,,

The symbols C(ll, 12, 13; ml, m2, m3) represent the Clebsch-Gordan co-

efficients (108) and have certain properties that provide for conservation

of angular momentum and parity in Equation (5-41). The principal proper-

ties of the Clebsch-Gordan coefficients are summarized in Appendix B, and

reference to them will be made frequently.

Finally, summation over 12 yields, in conjunction with Equation

(4-69), the following expression for the reactive scattering amplitude:

, ........
£ .,:l:. --:,1
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The Total Reaction Cross-Section

The differential reaction cross-section is obtained by substitution

of Equation (5-44) into Equation (3-30), or

z (5-45)

and the total reaction cross-sec on is obtained from i ®, @) by integra-
n

tion over @, @.

Now, referring to Equation (1-8), the expression for the detailed

specific rate constant is

(5-_6)

{.,.,s_.,,:,i.._) F (}_ ; '"/ /./

By assuming F °
Br2(ni, li, mi, PBr2 ) is independent of mi, the specific de-

tailed rate constant can be averaged over m. and then summed over mf to1

get

(5-47)

, "-"
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where

i

_(_,"._,'(.: ; '<,",: ,xr) : ii<-+i)
(5-48)

_.;. _ ....

Z-Z._ 2.... o-(4_,,,.,_:,,,,.;+<,,,_,,_},"'4)
"<:-[< _'_ :--_1

Thus, the cross-section defined by Equation (5-48) is really the cross-

section of interest with regard to rate constant determinations.

From Equation (5-44) the reaction cross-section of Equation (5-48) is

,>7 >,. 5, (5-49)

(Z{r*') l_:"')---- c (l_, g, &; -'>7,'_,-'>_,) el'4,6', ,s'_;-";, ,';, 'i" )
(;.#++l)(;.Jl(,+J)

o, 1 _l

c(_r,i_, _',,;,_,._,_ja's_,,,,.L+;q._..:,; c(<,_'_,4,;,,,,.,,,,:,_,.k )

• ! " i

c ( ,_,,h ,.__,; 4 ,;,.,) c(.4,,_:, & ; ,;,.,,,d c(_ ,& ,,s,,; ,;,o,oJ
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By the orthogonality relations given in Equation (B-20) of

Appendix B

(5-_0)

so summation over m.,l ml' and 1¼ yields

(_-51)

(_,,)(2q',,) L-q
.............. d_

(x7,_.,,s,,;-,,,_,o,-,>,_) else,s;, A,;-_ ,,_,-"7 ) <:_x+,._,,,'_;,._,.,,,>7

Using the symmetry properties of Clebsch-Gordan coefficients (see

Appendix B), one can write
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c ('_7.,s,,.fl,:, -,,,,<,o,-,,_J cC.c_,z/,,J_,;-,,,: ,,.,-,,,<) -- (-/):<__:" (_-52)

c (.c:,i_,i3;,,_,-,'_:

Invoking once more the orthogonality relation of Equation (B-21) in

Appendix B_ one obtains

.f_ t ,i3 /

,_,_3;'"_'-"7''>)c_Cs:,._,_:;,,,:,-,,,:,,>)(5-_3)

/

_s , S'3

/

Thus, summation over mf and 13 in Equation (5-51) results in

.,e.,/,: i//,f -, &j)_
Ns_

2_'7-i.Z_ ...........................
(5-54)

c ,-( r , s_, :<,/; o,<.>,,,) c" f .(,, i: , ._,; .:,,..',.,) _f: (.C,,o/.._'s)
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The discussion on computational procedure will show that the

summation over i I is bounded by i. and 14, the summation over 14 is

bounded by 13 and if, and the summation over 13 is bounded effectively

between two finite values. Thus, it is convenient to rearrange the

Clebsch-Gordan factor C2(II , ii, 14; 0, O, O) by the symmetry properties

in Appendix B. The result is

._ _J
c_&,&, _, ; o,o,o)

(5-55)

The total reaction cross-section can then be written as

/_) /-'. _.

'£ /d G""

(5-56)

.4, -" I._- Zr_l k, = ) ..t, -L J

c '-(& , L_,,,6 ; o, o, ,._)

where
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I(,(,o/t,): ,---op--o P-- 'J (5-57)

Indistinguishability of Bromine Atoms

The acceptable practice in scattering theory (109) is to treat the

collision as if all the particles involved were completely distinguishable,

and then modify the resulting cross-sections to account for the indistin-

guishability. Thus, the role of indistinguishability in the study of the

reaction H + Br 2 _HBr + Br has not been mentioned until now. When it is

taken into account (see Appendix C) the resulting expression for the reac-

tion cross-section is twice the cross-section in Equation (5-56). This is

the expected result since an H atom approaching a Br 2 molecule from a

large distance will attach to either Br atom with equal probability.

Computational Procedure

Computational Formula for Total Reaction Cross-Section

The vibrational wave functions R (r;P) and Z (P) were found to be
nf n.z

negligible outside of the ranges 0.9 s r s 2.5 A and 1.8 s p s 3.0 A,

respectively. Therefore, the integration of I(ii, O, 13) was carried out

for the region
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• (5-59)
H Z-J.cA

only. With this restriction placed on the integration of I(i I, 0, 13),

it is seen that the maximum value of the argument of JI3(M i k. P) isl

- _ Based on a Maxwell-Boltzmann distribution, more
(3/2)ki, since M i - 2.

than 99 percent of the collisions between H and Br 2 at 1000°K occur with

k. less than 20 _-i so the maximum argument of JI3(M i k i P) that will bel

of concern is 30. Now, an important property of spherical Bessel func-

tions is that, for fixed x and increasing i, Jl(X) reaches a maximum at

4

about 1 = x, and then decreases rapidly until, at 1 = _ x, it is only a

negligible fraction of its maximum. Hence, the summation over 13 will be

terminated in Equation (5-56) after 13 = 40 without incurring serious

error.

Next, one of the selection rules in Appendix B for the Clebsch-

Gordan coefficients states that C(I 4, ii, ii; 0, 0, 0) vanishes identically

until iI is in the range I i - 14 I _ iI _ 14 + i.. This provides fori l

conservation of angular momentum. And_ finally, the Clebsch-Go r dan co-

efficients C(if, 13 , 14; 0, 0, O) and C(I 4, ii, ii; O, 0, 0) insure con-

servation of parity by vanishing except when (if + 13 + 14 ) and (i4 + i. +1

ii) , respectively, are even integers. Thus, the expression for _(k i, ni,

li;kn, nf_ if) to be used for computational purposes is



I
Z29

2 _n
/ / __,

(5-60)

where the summations over 14 and iI are to be carried out in steps of two.

Also, because of the effective range of integration of 1(11,0,13) men-

tioned above, one can now use the relation

/3.o/;.s (_,,p)J (;,, o,6) -- _/e ._c P_r _ _,, e
p=I.fL r=o.9

(5-6_)

j,I.z,, d z,, C_)
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Calculation of the Integral I(i1,0,!3)

Using the trapezoidal rule, Equation (5-61) was integrated with an

interval of 0.025 A for both r and P. The integration was carried out on

the B-5500 computer of the Rich Electronic Computer Center, Georgia Insti-

tute of Technology. Before the actual integration was performed, the

functions Uf(r,P), Ull(knP), Zni(P), -Rnf(r;P), Jo(ki r), 813"(½ kip ) were

computed separately for the appropriate values of r and P.

The Potential-Energy Function. The function VL(r,P ) was computed

from Equation (5-33) and the function _f(r,P) was then obtained from

(5-62)

where VBr2(P ) is the ground state intermolecular potential for an isolated

Br 2 molecule. Utilizing the parameters of Table 4, the function VBr2(P)

was calculated using the Hulburt-Hirschfelder function, Equation (5-27).

After the appropriate values of _f(r,P) were computed, they were punched

out on cards to be used later in the integration program.

The Initial Vibrational Wave Functions. The vibrational wave func-

tions Z (P) were calculated from the equation given by ter Haar for the
n.
l

Morse oscillator (81):

Z (P)=
sl

P

(5-63)

where
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A '= (#1_; r /.t(. _)yk/' 5-64)

5-65)

_;'= X/z 5-66)

After taking the parameters a, pE and D from Table 4, the confluent geo-

metric function M(-n, A/D - 2n; 2X) was calculated from Equation (4-16),

and the normalizing constant N obtained by numerical integration of
n

)..A ._:T- 2 (_ t Y_-) - l_
W e A n;2X)atT- 5_67)

Using Equation (5-63), the necessary values of Z (P) were calculated for
n.
1

n. = O, to n = 8 and then punched out on cards to be used in the integra-l i

tion program.

The Vibrational Wave Functions for Perturbed HBr. Using the para-

meters in Table 5, the functions Rnf(r;P) were obtained from Equations

(4-13) and (4-23) for nf = 0 to nf = 9. The normalization factors Nnf(P )

were calculated from Equation (4-28), the integrals of which were evaluated

by the trapezoidal rule. The results of these calculations were stored on

cards as R (r;P) for later use.
nf

The Spherical Bessel Functions. The necessary values of the
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spherical Bessel functions Jo(k r) and j (½ kiP ) were calculated in the
i 13

early stages of the actual integration program for 1(11,0,13) and stored

in the computer memoryfor later use. Since the arguments of these func-

tions depend on k., the initial energy of approach was specified prior
l

to their calculation. The function Jl (½ kiP) was computed for 13 = 0
3

to 13 = 40 by the Miller recurrence algorithm (Ii0) as follows.

For fixed P, values of zero and one were assigned to FL + i and

FL, respectively, where L is some integer larger than ½ k. P. Taking Ll

equal to 80, the recurrence relation (ii0)

F (x)-- F C×) x_
L-a L _t(Ltl)L L*_

(5-68)

for spherical Bessel functions was generate a sequence of numbers {FL}

down to L = O. The exact value of Jo(½ kiP ) was computed from

_.o ix) -: 5;_ (_) / x (5-69)

and compared with Fo(X). Every FL(X ) was multiplied by the ratio Jo(X)/

Fo(X ) to form a sequence [GL(X)]. Comparison with tables of spherical

Bessel functions for x = i0, 50 (ii0) showed the disagreement between

GL(x ) and JL(X) to be less than 0.0001 percent.

The function Jo(kir) was computed from the exact relation given

by Equation (5-69).

The Final Translational Wave Functions. After specifying the

initial and final states and the initial energy of approach, the final
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wave constant k was determined from conservation of energy (see later
n

discussion). When the criteria represented by Equations (4-53) and (4-54)

were met, Equation (4-55) was used to generate values for Ull(knP ) . Other-

wise, the program shifted into the Numerov method previously described in

Chapter V. Equation (4-58) was used to compute values for Ull(knP ) where

H equaled 0.001. At P = 1.8, 1.825, ..., 2.575, 2.600 A, the corresponding

values of Ul (knP) were stored in the computer memory to be used in Equa-
l

tion (5-61).

Additional Comment. To check the accuracy of using an interval of

0.025 A for r and P in the numerical calculation of 1(11,0,13) , the fore-

going procedure was carried out for k.m = I0 _-i, n.l = 4, l.l = 60, nf = 3,

if = i0, 13 = 40, 14 = 40, iI = i00 at intervals of integration of 0.025

and 0.0025 A. The value 1(11,0,13) obtained by using the smaller interval

of integration differed by less than three percent from the value corre-

sponding to the larger interval.

When the subprogram for Ull(knP ) was written, the value of H was

decreased to 0.0001 in order to insure that Equation (4-58) gave fairly

accurate results when the larger value of H, 0.001, was used. The values

of Ull(knP ) corresponding to H = 0.001 differed from those values corre-

sponding to H = 0.0001 by less than five percent.

The Clebsch-Gordan Coefficients

Before summing over 13, 14 , and iI in Equation (5-60), the Clebsch-

Gordan coefficients C(if, 13, 14; O, 0, O) and C(14, li, ii; O, O, O) had

to be calculated. From Equation (B-27) in Appendix B,
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C_(,+ .__ + c_ 4 J ) !
(5-7o)

Q! ]z

where

O.- (.r,.+D. +s_)/_ (5-71)

Since C(II, 12, 13; O, O, O) for Q not an integer, Equation (5-70) was

used only when Q is an integer.

The method used to computer C2(if, 13, 14; 0, O, O) and C2(14 , li,

ii; O, O, O) was as follows:

(a) The logarithms of n_ for n = O, i, 2, 3, ..., 300 were calcu-

lated and stored in the memory of the computer.

(b) The squares of the Clebsch-Gordan coefficients were computed

from the relation
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as needed. Equation (5-72) was used to avoid exceeding the maximum

number limit (about 1064) of the computer. Thus, it is desirable to use

a relation in which the logarithm of 300! appears rather than 3001 itself.

Conservation of Energy

Because reactive collisions under consideration are assumed to be

adiabatic, the total energy is conserved during the collision. Assuming

that H and Br 2 initially approach each other with a relative translational

energy of (_2/2 _i)k_, the total energy E of the collision can be expressed

as

(5-73)

where Evib, i and Erot, i represent the initial vibrational and rotational
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energies, respectively, of Br2. The final translational energy is then

given by

" f
(5-74)

by conservation of energy.

Notice that the requirement of a positive final relative trans-

lational energy effectively limits the magnitude of the internal energy

of HBr. Thus, the maximum allowable value of nf is the largest integer

satisfying the inequality

2",P

Also, for each final vibrational state nf, the maximum rotational quantum

number if is the largest integer satisfying

(_-TG)

_/ E+D ,z -,f_A

The parameters A, B, D, _, and T for HBr are taken from Table 4.
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Results of Calculations

Relation of Reaction Cross-Sections to Final State

Using the procedure just outlined, values of c(ki, ni, li; kn, nf,

lf) were first calculated for Etr,i = 10OO gram A2/sec 2, n.l = O, 1.1 = 60.

For conservation of energy, the maximum allowable value of nf was six.

The maximum allowable value of if for each vibrational state is listed in

Table 6.

Table 6. Maximum Rotational State Allowed for EachoAllowed_ Final

Vibrational State When Etr,i = lO00 gram A2/sec 2, n. = O,
and i. = 60. l

1

Vibrational State

Quantum Number

Quantum Number of Maximum

Rotational State

O 43

i 4o

2 37

3 32

4 27

5 2o

6 12

For nf = i_ 3, and 6, the results for _(ki, ni, li; kn, nf, if)

are given in Tables 7, 8, and 9 for all of the possible values of i .
f

Notice that the larger values of _ correspond to the higher rotational

states possible for a given vibrational state.

To save space, the remaining reaction cross-sections are reported

as sums over all the possible rotational states corresponding to a given

nf, or
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Table 7. Reaction Cross-Section (_2Versusif for nf = i When
Etr,i = 1000 gram A2/sec , n i = 0, and 1.1 = 60.

if

0

i

2

3
4

5
6

7
8

9
i0

ll

12

13

14

z5
16

Z7
Z8

19

if

0.00o17 20

0.00025 21

O.OOO33 22

0.00041 23

0.00050 24

0.0o060 25
0.00071 26

0.00083 27

0.00096 28

0. O0110 29

O. 00125 30

0.00141 31

0.00158 32

0.00176 33

0.00195 34

0.00215 35

0.00237 36

0.00262 37

0.00289 38

0.00317 39
4o

0.00346

0.00377

0.00409

0.00442

0.00474

o.oo5o8

o.oo545

o.oo585
0.00628

0.00671

0.00716

0.00760

0.o0815
0.00863

0.00913

0.00960

0.01513
0.01626
0.02621

0.08500

0.00899
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Table
8. Reaction Cross-Sect_on a2Versus

Etr,i = lO00 gram A /sec , ni =
if for
O, and

nf =
l. =
1

3 When
60.

if

0

i
2

3
4

5
6

7
8

9

i0

ii

12

13
Z4

15

0.00049

O.OO057
0.00066

0.00076

O.OOO89
0.00101

0.00115

0.00129
0.00144

0.00161

0.00179
o.oo198

0.00220

0.00243
0.00268

0.00293

if

16

17
z8

19
2o

21

22

23
24

25
26

27
28

29
3o

31

32

0.00319

0.00346

0.00375
0.00404

0.00431
0.00460

0.00491
o.oo528

0.00561

0.00597
0.00632

0.00669

0.00711
o.o2628

0.06794

0.29479

o.o7721
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Table 9. Reaction Cross-Section _2Versus if for nf = 6 When

Etr,i = lO00 gram A2/sec _ n i = O, and 1. 60.
1

o o.oo7
l o.o16
2 o.o35
3 0.076

4 o.158
5 o.281
6 0.387

7 O. 447

8 O. 501

9 O. 567

lo o.652
ii 3. 525

12 i. 291
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AX

(5-77)

Table lO contains values of _ for nf = 0 to 6. It is apparent that the

larger values of _ correspond to the higher vibrational states allowed by

the conservation of energy requirement.

Table lO. Reaction Cross-Section _ Versus n. When = lO00
°2 2 zgram A /sec, n. = O, and 1. = 60. Etr_i

l 1

nf

o O.lO9
1 o. 278

2 o. 407

3 0.555

4 o. 962

5 2.o31

6 7.943

The Effect of the Initial Conditions

The reaction cross-sections required for calculation of the total

reaction rate constant (see Chapter I) are the quantities
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Therefore, the analysis of the effect of the initial conditions on the

reaction A + BC_ AB + C is most conveniently carried out by calculations

of S(ki, ni,li) versus ki, ni, i.. Table ii summarizes someof the resultsl
of these calculations, and apparently the initial conditions cause little

or no effect on S.

In order to makecomparisons with the results of Polanyi given in

Table 3, values of the reaction cross-section _(ki, ni, li; kn, nf) corre-

sponding to various initial conditions are presented in Table 12. The

symbol Etr,i in Table 12 denotes the initial relative translational energy.

Since values for _ are reported in Table iO for the initial conditions

Etr,i = iO00 gramA2/sec2, n.z = O, l.m = 60, these values are exluded in

Table 12.

It is apparent that _ is peaked around nf = 6, 7 for most initial

conditions, and therefore the rate constant

will be higher for nf = 6 or 7 than for nf = 3; this is in direct contrast

with Polanyi's results in Table 3.

Discussion of Results

An examination will now be made of the physical significance of the

foregoing results, especially with regard to the nature of the potential-
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Table ii. Reaction Cross-Section S Versus Etr,i , n i, 1..l

Etr,i gram A2/sec2 n i l.l S, _2

500 0 30 10.223

500 0 60 10.769

500 0 i00 10.930

500 2 30 i0.118

500 2 60 9.824

5oo 2 ioo i0.421
5OO 5 3O 10.928
500 5 60 i1.421

500 5 i00 10.872

i000 0 30 11.848

looo o 6o 12.285
i000 0 i00 12.227

i000 2 30 12.627

i000 2 60 12.511

i000 2 i00 12.750

i000 5 30 12.433

i000 5 60 12.789

i000 5 i00 12.962

2000 0 30 i0.991

2000 0 60 12.08B

2000 0 i00 13.174

2000 2 30 14.004

2000 2 60 14.117

2000 2 i00 14.328

2000 5 30 13.724

2000 5 60 13.661

2000 5 i00 12.962
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Table 12. Reaction Cross-Section _ for Various Initial Conditions

Etr,i , gram A2/sec2 n. 1. nf _, _2
__ 1 1

500 0 60 0 0.i01

500 0 60 i 0.263

500 0 60 2 0.391

500 0 60 3 0.532

500 0 60 4 0.947

500 0 60 5 1.986

500 0 60 6 6.549

500 5 60 0 0.097

5OO 5 6O 1 0.283

500 5 60 2 0.413

5OO 5 6O 3 O.558
5OO 5 6O 4 i.186

500 5 60 5 2.221

500 5 60 6 6.663

ZOO0 5 6O 0 0.i04

IOO0 5 6O 1 O.286

i000 5 6O 2 0.42

i000 5 60 3 0.588

lO00 5 6O 4 1.301
lO00 5 60 5 2.424

i000 5 60 6 7.674

2000 0 60 0 0.056
2000 0 6O i 0.202

2000 0 6O 2 O.35O

2OOO 0 6O 3 O.5O5

2OOO 0 6O 4 0.704

2000 0 6O 5 i.221
2OOO 0 6O 6 2.L12

2000 0 60 7 6.932

2OOO 5 6O 0 0.061

2OOO 5 6O 1 0.215

2000 5 60 2 0.362

2OOO 5 6O 3 O.523
2OOO 5 6O 4 0.8i4

2000 5 60 5 1.527
2OOO 5 6O 6 2.628

2000 5 60 7 7.531
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energy surface. From this analysis, one hopes to discover which features

of Ellison's potential-energy surface should be altered in order to bring

the calculated reaction cross-sections into agreement with the experimental

results of Polanyi (lO).

The Influence of Initial Conditions

The weak dependence of the reaction cross-sections on the initial

conditions ki, ni, 1. is due in part to the low activation energy for thel

reaction H + Br 2 _HBr + Br, at least for Ellison's potential-energy sur-

face (about 2.0 kilocalories per mole). Furthermore, even the effect of

this small activation energy is minimized by the perturbed Morse oscillator

method used to approximate the functions Rnf(r;P). In Figure 5, for in-

stance, the small hump to the right of the equilibrium interatomic distance

is roughly attributable to the activation energy between Br 2 and the oncom-

ing H atom. In fitting the curve in Figure 5 to a Morse-type function, this

small hump was neglected. The inclusion of this small barrier, however,

would lead to only one or two additional vibrational states of limited

stability.

The presence of the activation energy hump has a very slight effect

on the value of the integral I(ll,0,13) in Equation (5-61). In Figure 7_

a plot of the potential Uf(r,P) for P = 2.283 A shows that the contribution

to I(ll,O,13) resulting from the activation energy (which lies between

points b and c) will subtract from the major contribution to I(ll,O,13)

coming from the region between points a and b. But because the wave func-

tion _ (r;P) is so small in the region between b and c_ this offsetting
nf

effect is very slight.

Another reason for the weak dependence of the reaction cross-sections
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upon the initial conditions involves the use of Equation (3-37). Because

the wave function _f is a solution to the complete Scroedinger equation,

it should reflect, implicitly at least, the influence of the activation

energy. Even this implicit dependence on the activation energy was ob-

scured however, when the "linear complex" form of _f, _f, was approximated

by the expansion given in Equation (3-49). As mentioned in the first

paragraph of this section, the activation energy was neglected completely

in the calculation of R (r;P); hence, as indicated by Equation (4-9), the
nf

functions
zn(r;P ) are uninfluenced by activation energy. Also, the other

functions in Equation (3-49), the translational motion coefficients Gn(_),

are independent of the vector r, along which occurs the approach of H

toward Br2; thus, the functions Gn(_), cannot account for any effect of the

activation energy.

If Equation (3-36) were used for the differential reaction cross-

section, the wave function _ could be expanded as
l

Jn(R) are the initial translational motion coefficients andwhere

Wn(_BC;_ ) are perturbed stationary state functions for Br 2 •
Because of

their explicit dependence on R, the vector along which the activation

takes effect, the functions Jn(R) can be made to account for theenergy

influence of activation energy. On the other hand, according to Figure

6, the potential-energy between the two bromine atoms is rendered non-

bonding upon the approach of H. This destruction of the Br 2 bond makes
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the approximation of the functions by the perturbed stationary state

approximation virtually impossible.

Distribution of the Total Collision Energy Among the Products

Tables 7, 8, 9, and ll show that the reaction cross-sections

_(k i, hi, li; kn, nf, lf) tend to be larger for the higher internal energy

states of HBr. For each vibrational state, the major contribution to the

reaction cross-section appears to come from the higher possible rotational

states, i.e., the rotational states which barely satisfy the inequality

in Equation (5-76). Furthermore, the reaction cross-sections _(ki, ni, li;

kn, nf) for scattering into the higher possible vibrational states are ob-

viously greater than the cross-sections for the lower vibrational states.

Influence of the Final Translational Wave Functions. An explanation

of the product energy distribution lies in the character of Ellison's

potential-energy surface and its influence on the functions Ull(knP ). Equa-

tion (5-61) indicates that a rapidly oscillating (knP) would have a
Ul 1

canceling effect on the value of I(ll,O,13) when integration over P is

performed. Now, suppose a reactive collision (with initial conditions

Etr,i = 2000 gram A2/sec2, n.1 = O, 1.1 = O) results in a moderately excited

HBr molecule (say, nf = l, If = lO).

From Equations (4-34) and (4-35) it is seen that

For discussion purposes, a less cumbersome notation will be adopted.

w = Ul , and
1

Let
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(5-s2)

Thus,

(5-83)

In order to envision how T vari_ with P, the effective potential

Cn(P) + (_2/2 _f) [ ii(i I + I)/P 2 _ in Equation (4-46) and the total

energy E were plotted versus P in Figure 8. The function _ (P), which is
n

characteristic of the potential-energy surface, was calculated from Equa-

tion (4-27)• For illustrative purposes, iI was arbitrarily set equal to

60, although the curve in Figure 8 is typical for any appropriate value

of iI.

For P < P , • is less than zero, and the solution w of Equation
O

(4-46) is a very small function, decreasing exponentially as P decreases.

As T barely becomes greater than zero, d2w/dP 2 becomes negative and the

slope dw/dP begins to decrease, causing w to go through a maximum at point

a. As w decreases below zero, d2w/dP 2 becomes positive, and dw/dP begins

to increase from negative to positive values, thereby causing w to increase

from negative to positive values. But, when w is positive, d2w/dP 2 becomes

negative once again. This cyclic variation in the sign of d2w/dP 2 leads

to an oscillating function w. As P increases further beyond P , T becomes
O

much greater, causing the function w to oscillate more rapidly. An impor-

tant conclusion, therefore, is that the more slowly oscillating values of

w occur in the region just to the right of point P
o



150

Od
cD
©
_9

o4

bO

40

40
O
O_

ioo

75

5o

_3

.H

O

25

h0

0

4O
O

-25

-5O

-75
1.O

Effective Potential

Total Energy

I

I

i

I

I

I

I

I

I I I I I I
1.5 2.0 Po 2.5 3.0 3.5

Figure 8. Total Energy and Effective Potential Versus P.



151

Now, it is also true that the initial vibrational wave function

Zn.(P ) in Equation (5-61) is peaked around P = 2.284 A. Then the region
1

of more slowly oscillating w will coincide with the region of large Z (P)
ni

if P is slightly to the left of P = 2.284 A. If such is the case, the
O

resulting values of 1(11,0,13) will be much higher than those values corre-

sponding to a rapidly oscillating w in the region around P = 2.284 A.

If • is to be small and positive around P = 2.284 A, it is evident

from Equation (5-8_, that the function c (P) must lie slightly below
n

E - 11(11 + 1)/P 2. For Ellison's potential-energy surface, the functions

Cn(P) at P = 2.284 A are approximately equal to the energy levels E for
n

unperturbed HBr (see Figure 8). Because of the relative smallness of

ii(i I + I)/P 2, the requirement that E = _n(P) - ii(i I + I)/P 2 be small at

P = 2.284 A is met approximately by those combinations of nf and if such

that E is slightly below E in magnitude.
n

The Peaking of the Reaction Cross-Sections _ at the Higher Possible

Rotational States. For the case where (_2/2 _i ) k_ = i000 gram A2/sec21

ni = O, l.z = 60, nf = 3, if = 30, the value of T at P = 2.284 A is so large

(about 1900 _-2 at iI = 60) that the reaction cross-section _(ki, ni, li;

kn, nf, if) is only 0.06794 _2 (see Table 8). On the other hand, if if =

31 with the other conditions the same, _ is small and positive at P =

2.284 A (about 500 _-2 for iI = 60), and the resulting value of d(ki, ni,

li; kn, nf, if) is 0.29479 _2.

When if = 32 and the other conditions are the same, T is negative

for most values of ii; the corresponding values of w are small and positive

in the vicinity of P = 2.284 A. Thus, the reaction cross-section corre-

sponding to if = 32 is not as high as the reaction cross-section corre-
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sponding to if = 31.

The Peaking of the Reaction Cross-Section _ About the Higher

Possible Vibrational States. The major factor contributing to the peak-

ing of _(ki, ni, li; kn, nf) about the higher possible vibrational states

is the closeness of the rotational levels for low quantum numbers if.

From Equation (4-27), the energy difference A_ between a rotational state
n

if and the next highest state is, for constant nf,

Now, as if increases from zero in steps of one, s (P = 2.284 A) changes byn

discrete amounts. For a given total energy E and final partial wave II_

the quantity

(s-ss)

becomes smaller as if increases. Assume that the vibrational state nf is

such that

(s-s6)

= _ below i_axfor if O. Then there exists some crucial rotational state if

such that
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On the average, T(P = 2.284 A) will be smaller for smaller ACn(P), since

the smallest positive value of T (occurring when if = i_) is indicated by

Equations (5-87) and (5-88) to be less than _n(P). From Equation (5-84)
t

it is apparent that smaller if s contribute to smaller values of T at

P = 2.284 A, resulting in more slowly oscillating functions u (knP) . By
iI

Equation (5-75), the larger the value of nf, the smaller the associated

l

if s. Therefore, the higher vibrational states for which Equation (5-75)

is satisfied have more slowly oscillating functions u! (knP), which corre-
i

spond to larger values of the reaction cross-section _(ki, ni, li; kn, nf).

For Ellison's potential-energy surface

(5-89)

when P = 2.284 A. Thus, it is now apparent why the reaction cross-sections

are peaked around the higher possible rotational states.

Comparison with Experimental and Classical Mechanical Results of Polanyi

It was mentioned that the calculated results for _(ki, ni, li; kn, nf)

in Tables i0 and 12 will yield, in conjunction with Equation (5-79), values

of K that are higher for nf : 6 or 7 than for nf = 3. In contrast, from

the infrared chemiluminescence of a reacting H + Br 2 mixture_ Polanyi and



his associates (i0) were able to showexactly the opposite effect (see

 able 3).

"Repulsive" Potential-Energy Surface. Polanyi's group was able t_

account for this experimental behavior by reference to a "reptulsive"

potential-energy surface (60). A "repulsive" surface_ in the parlance of

Polanyi, was one which resulted in the following kinematical patter u to_

the use of classical mechanics:

(i) From a region of negligible interaction_ the lighter H atom

approaches the Br 2 molecule. The Br 2 interatomic distance remains abo_!,

2.3 A until the distance between the H atom and the nearer bromine ato_:

decreases to about 1.45 A. This forms an "activated state" colofict!ratiom

which is very short-lived (the "activated state" is in existence ±_ about

the same time required for H to fly by Br 2 if no interaction were preseut) o

(2) Very little of the energy of reaction is released at this oo:ut;

that is, the "activated state" energy is only slightly below that of _h,_

reactants.

4-7(3) The furthermost Br atom begins to depart_ thus breaki:_!_ _,_ ,_c

"activated state" configuration. As the bromine atom recedes from the )[B__

molecule, most of the reaction energy is released; that is_ the _cu_va_+_

state" energy is much greater than that of the products.

The use of this "repulsive" potential-energy surface im the classical

Hamiltonian for three body planar motion resulted in only fifteen op __rc._ _,_

of the energy of reaction appearing as internal energy of HBr. The iui4i_i

conditions in these studies were varied systematically rather tha_ by tl-:

Monte Carlo method (22).

The reason given by Polanyi and his colleagues for the !,o_,-de _'_,ee
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of vibrational excitation of HBr is that the HBr interatomic distance in

the "activated state" is essentially the normal bond length. Because of

their near-equilibrium separation, the hydrogen and nearer bromine atoms

tend to recoil together as the furthermost bromine atom is repelled away.

'_ttractive" Potential-Energy Surface. By using an "attractive

potential-energy surface, Polanyi's group (60) obtained substantial inter-

nal excitation of HBr (about 88 percent of the energy of reaction appeared

as internal energy of HBr). According to Polanyi, an "attractive" potential-

energy surface is one which results in the following classical mechanical

behavior:

(i) The "activated state" is formed with the release of most of the

energy of reaction; that is, the energy of the "activated state" is far

below that of the reactants.

(2) The departure of the furthermost Br atom results in very little

release of energy of reaction.

The explanation given for the high vibrational excitation of HBr was

that the HBr bond was under stress when the furthermost Br atom was being

repelled. Thus, the hydrogen and nearer bromine atoms tended to recoil

separately rather than as a diatomic aggregate.

Comparison with quantum Mechanics. Examaination of Figures 5 and 6

and Table 5 reveals that Ellison's potential-energy surface for H + Br 2 is

an "attractive" potential-energy surface. About 95.5 percent of the energy

of reaction has been released by the time the "activated state" is formed.

With respect to the effect of an "attractive" potential-energy surface upon

product energy distribution, it is apparent that the foregoing quantum

mechanical results are in qualitative agreement with Polanyi's classical
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mechanical results.

It is now appropriate to examine the form the potential-energy sur-

face for H + Br 2 _HBr + Br must have so that the perturbed Morse oscilla-

tor calculation will be in qualitative agreement with Polanyi's experimental

results in Table 3. In previous sections of this chapter, it was clearly

demonstrated that when T is positive positive at P = 2.283 A, the smaller

values of T give rise to larger values of the reaction cross-section

_(k i, ni, li; kn, nf, if). bus, from Equation (5-83), it is apparent that

¢n (P) comes to E - (_2/2 _f)ll(l I + I)/P 2 at P = 2.283 A, thethe closer

higher will be the resulting reaction cross-section o(ki, n i , li; kn , n f,

if). An examination of the form of e_(P) in Equation (4-10) indicates that

for constant nf and lf, higher values of the parametric function U (P) atm

P = 2.283 A will result in higher values of e_(P). From the perturbation

relation in Equation (4-24), it is evident that the higher values of e_(P)

contribute, in turn, to higher values of en(P ). Furthermore, from Figure 3,

it is obvious that higher values of Um(P ) at P = 2.283 A result in a poten-

tial-energy surface which is more "repulsive"; that is, the energy of the

configuration r = 1.45 A, P = 2.283 A (the "activated state") is closer to

the energy of the reactants. It is conceivable, therefore, that by making

Ellison's potential-energy surface more "repulsive", smaller values of T

at P = 2.283 A will occur for less energetic states of HBr. As a result,

larger reaction cross-sections a(ki, ni, li; kn, nf, lf) will correspond

to lower internal states of HBr.

The above analysis indicates that if a "repulsive" potential-energy

surface were used in the "linear complex" calculations outlined earlier in

this chapter, the resulting reaction cross-sections would have been in



157

closer agreement with the experimental data of Polanyi.
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CHAPTER VI

REACTION CROSS-SECTIONS FOR H + Br 2 -_ HBr + Br

CORRESPONDING TO "REPULSIVE" POTENTIAL-ENERGY SURFACE

The qualitative analysis of the results of the previous chapter

suggested that a potential-energy more "repulsive" than Ellison's should

yield reaction cross-sections in agreement with Polanyi's experimental

findings. To verify this conclusion, a repetition of the foregoing reac-

tion cross-section calculations for a "repulsive" potential-energy surface

seems appriate. If the quantum mechanically calculated reaction cross-

sections are found to be in agreement with experiment, Polanyi's conclusions

regarding the true nature of the H-Br-Br potential-energy surface (60) will

be reinforced.

Construction of a "Repulsive" Potential-Energy Surface

The perturbed Morse oscillator method can be retained if the "re-

pulsive" potential-energy surface has Morse-like features. Thus, as dis-

cussed in Chapter IV, a plot of the potential-energy function versus r for

constant P should possess the shape of a Morse curve, regardless of the

value of P. If Morse-like features are incorporated into its construction,

the "repulsive" potential-energy surface can be partitioned in the manner

of Equation (4-1); that is,

VL P) = (r,P) + (VL-V ) I6-1}
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where

(6-2)

As pointed out in Chapter IV, proper adjustment of the parametric func-

tions D(P), a(P), rE(P ), and Um (P) can render (VL - VM) extremely small

in comparison with VM, especially in the vicinity of the potential well

(see Figure 3).

Now, it is recalled that the functions R (r;P) depend essentially
nf

on the form of V(r,P) within the potential well (that is, within the imter-

val 0.9 A _ r _ 2.5 A). Also, in the evaluation of 1(11,0,13) in Equation

(5-61), the form of the potential-energy function

(6-3)

is important only within the region 0.9 A _ r _ 2.5 A. Thus, the potential-

energy function VL(r,P ) influences the reaction cross-section calculations

of Chapter V only over the domain 0.9 A _ r _ 2.5 A, 0 _ P _ _. Since

VL - VM is small in this domain, a convenient approach would be to approxi-

mate VL(r,P ) by the form in Equation (6-2). This approximation is necessi-

tated by the lack of detailed information concerning the actual potential-

energy surface. Furthermore, only the gross characteristics of the poten-

tial-energy surface, such as its "repulsiveness", are of interest in the

present analysis.
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The Parametric Functions

As mentioned in the latter part of the previous chapter, a poten-

tial-energy surface of the form

(6_4)

is more "repulsive" the higher the function U (P) at P = 2.3 A. For
m

Ellison's potential-energy function, plots of VL(r,P ) versus P for con-

stant r look like the curve in Figure 6. Curves of this form can be re-

presented fairly accurately over the domain 0 _ P _ _, 0.9 A _ r _ 2.5

by the function

(6-5)

It is obvious" that VL(r,P ) has the Morse-like form of Equation (6-2) with

When r equals r_r(P), the function VL(r,P ) approaches -DHB r as P

approaches infinity. Thus, VL(r,P ) has the correct asymptotic form with

respect to P. On the other hand, VL(r,P ) does not have the correct

asymptotic form with respect to r. This defect in Equation (6-5) is not

serious, however, since the function VL(r,P ) will not be utilized for

large values of r. Therefore, by proper selection of the functions D(P),
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a(P), rE(P ) and the constants 6, _, 6, and y, the function VL(r,P ) can

be molded into a plausible "repulsive" potential-energy function for the

H + Br2 _HBr + Br reaction.

The Functions Um(P ) and r(_ Because the potential-energies of

vibrationless Br 2 and HBr are - 31,898 gram A2/sec2 and - 62,753 gram _2/

2

sec , respectively, the energy of reaction H + Br 2 _ HBr + Br is about

30,855 gram A2/sec2. If the potential-energy of the "activated state"

associated with the above reaction is 41,000 gram A2/sec2- , then the

potential-energy function governing the reaction is considered to be about

two-thirds "repulsive". That is, i0,000 gram A2/sec2 of the energy of

reaction is released during the approach of H toward Br 2 to form the

"activated state". As a beginning, the function Um(P ) will be adjusted

to make VL(r,P ) about two-thirds "repulsive".

From his classical mechanical studies, Polanyi (60,111) discovered

that the "activated state" for H-Br-Br corresponds roughly to the linear

E _ E

configuration with r = rHB r and P = rBr 2. For Ellison's potential-energy
E

surface, Equation (5-33), the local minimum value of VL(r,P ) for r = rHBr,

P _ r_r 2 is located at r = 1.45 A, P = 2.3 A.

It will be assumed that the "activated state" for the "repulsive"

energy surface exists when r = 1.45 A, P = 2.3 A. If Equation (6-5) is to

possess a minimum with respect to r at r = 1.45 A, P = 2.3 A, then rE(P =

2.3 A) must be equal to 1.45 A. The form for VL(r,P ) in Equation (6-5)

does not allow for a local minimum with respect to P at P = 2.3 A, but

according to Figure 6 this minimum was very slight even in the case of

Ellison's potential-energy surface. Thus, by this somewhat arbitrary

definition of the "activated state" configuration, the "repulsive" poten-
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tial-energy function can be written at r = 1.45 A and P = 2.3 A as

Because DHB r is 62,753 gram A2/sec2,

= - */I°°° (6-7)

= _.//7s3 exP (_.3 e) (6-8)

Another relationship involving 6 and ¢ can be obtained by assuming that

at r = 1.45 A and some large value of P, say P = 4.0 A, the "repulsive"

function given by Equation (6-5) has the same value as that given by the

"attractive" potential-energy function, Equation (5-33). Since this value

is calculated from Equation (5-33) to be - 61,994 gram A2/sec2, then

(6-9)

o-i
and ¢ = 1.974 A . Substituting this value for ¢ into Equation (6-8)

yields 6 = 2,103,319 gram A2/sec2.

The "repulsive" potential-energy surface can now be written as

(6-10)
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The Function D(P). In order to construct a suitable expression for

the parametric function D(P), the value D(P) should possess at P = 2.3

in order for Equation (6-5) to remain a reasonable approximation to the

actual potential-energy surface should be determined. A plot of the actual

potential-energy surface versus r at P = 2.3 A should yield a curve quali-

tatively similar to that shown in Figure 2. Since experimental evidence

(i01) points to a low activation energy (about 2.0 kilocalories per mole),

point B on Figure 2 should correspond to a value not much greater than

-DBr 2. From Figure 2 it is seen that D(P = 2.3 A) should be taken as the

vertical distance between points A and B. Because point A corresponds to

- 41,000 gram A2/sec2 and point B should only be a few thousand gram _2/

sec 2 above -DBr (31,898 gram A2/s c2), it is feasible to set D(P) equal

_ 2
to 17,000 gram A_/sec at P = 2.3 A; that is,

DCP= )= /7,ooo (6-11)

Furthermore, if the approximate functional behavior of D(P) for Ellison's

potential-energy surface is retained, then D(P) will begin at some large

value (about DHBr) at P = 0, decrease smoothly to 17,000 gram A2/sec2 at

P = 2.3 A, and then increase, approaching DHB r as P approaches infinity.

A function which qualitatively describes this behavior is

(6-12)

The function within the brackets can be called the "switching function" for
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D(P) since it describes the shifting of the dissociation parameter D(P)

as rBr 2 increases. Suplinskas (41) used this terminology to describe a
similar function in his study of the reaction K + HBr -KBr + H.

From the requirement that D(P) equal 17,O00 gram A2/sec2 at P =

2.3 A and D(P) approaches DHBr as P approaches infinity, B = 0.27090 and

y = 0.72910.

The Function a(P). It now remains to formulate a plausible ex-

pression for the parametric function a(P). Referring to Table 5, it is

seen that a(P) equals 1.828 _-i when P is zero, increases smoothly to

2.387 _-i when P = 2.3 A, and then smoothly decreases to 1.809 _-i as P

approaches infinity. Thus, it is practical to use a "switching function"

like that in Equation (6-12 ) to describe the behavior of a(P) with respect

to P:

(6-J_3)

Here, G, H, and N are constants which will be determined from the following

requirements on a(P):

(i) a(P) is equal to the parameter a in Table 4 for HBr when P is

very large; i.e.,

o. (p--. = /. 7,-' (6-14)

(2) For I P -2.3 I > l.O A, it is assumed that a(P) for the "repul-

sive" potential-energy surface will take on values similar to those corre-

sponding to Ellison's potential-energy surface. From Table 2, the average
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o-i
of a (P = 1.3 A) and a(P = 3.3 A) is 1.860 A .

a(P) in Equation (6-12), one obtains

Taking this value for

= (6-15)

(3) Finally, it should be decided what the desirable value of a(P)

o

would be at P = 2.3 A. In order that the perturbed Morse oscillator method

can yield reaction cross-sections in qualitative agreement with experiment,

it is imperative that the function T of Equation (5-83) be small at P =

2.3 A when nf is three. From Equations (4-15) and (4-22), it is evident

that Cn(P = 2.3 A, nf = 3) will be larger, the larger is a(P = 2.3 A). To

insure that a(P = 2.3 A) is sufficiently large to yield large reaction cross-

sections for nf = 3, it will be allowed to have a value somewhat larger than

that corresponding to Ellison's potential-energy surface; that is, for the

"repulsive" potential-energy function, a(P = 2.3 A) will be 4.00 _-i in-

stead of 2.387 h -1, as shown in Table 2. Because of the three quantitative

requirements for a(P), the constants in Equation (6-13) are easily found

o-I o-i
to be G = 4.00 A , H = 2.191 h-I, and N = 2.221 A . Thus,

(6-16)

Numerical Procedure for Reaction Cross-Sections Corresponding

to the "Repulsive" Potential-Energy Surface

Now that a suitable'Tepulsive" potential-energy surface has been

formulated, the perturbed Morse oscillator method can be applied to calcu-

late the corresponding reaction cross-sections. Essentially, this involves
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repeating the procedure outlined in Chapters IV and V although the second

order perturbation treatment described by Equations (4-23) through (4-28)

can be eliminated. This simplification results from the direct formulation

of the "repulsive" potential-energy surface in the form of Equation (4-3);

thus, the term V in Equation (4-1) is zero, and the perturbation correctionP
is unnecessary.

The numerical integration of

/3,o/2,S D_
P=I,$ r=o.9

was performed in the manner described in Chapter V. Due to the alteration

of the potential-energy surface, a few factors in the integrand, i.e.,

%f(r;P), Ull(knP), and _f(r,P), differ from those used in the previous

calculations. All other numerical aspects of the procedure outlined in

Chapter V were adopted without alteration for the computation of the reac-

tion cross-sections corresponding to the "repulsive" potential-energy sur-

face. Thus, the discussion that follows will be limited to the subject of

calculating the functions R--nf(r;P)_ Ul (knP), and _f(r,P).I

The Function U_ (k P). The solutions to the differential equation

(6-18)
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must be recalculated for the "repulsive" potential-energy surface, which

affects Ul (knP) through the function ¢ (P) Since the "repulsive"
i n '

potential-energy surface was constructed so that e (P) is larger in the
n

region P _ 2.3 A than the corresponding function for Ellison's surface,

the function

F
(6-19)

is smaller than P _ 2.3 A. Thus, for the "repulsive" potential-energy

surface, the function ull(knP ) will not oscillate in the region around

P _ 2.3 A as rapidly as did Ellison's potential-energy surface. For in-

stance, suppose Ull(knP)_ is plotted versus P for both Ellison's and the

"repulsive" potential-energy surface for Etr,i = i000 gram A2/sec 2, n. =i

0, i. = 60, nf = 3, and if = 6 It can be shown that u (knP) has about
l " iI

thirty nodes between P _ 2.0 and P _ 2.6 A for Ellison's potential-energy

surface, whereas only five nodes are present over the same region for the

"repulsive" potential-energy surface. Thus, the canceling effect that the

oscillation of Ull(knP ) has on the integration of Equation (6-17) will be

less marked for the "repulsive" potential-energy surface than for Ellison's.

Using either Equations (4-55) or (4-57), depending on whether or

not the criteria in Equations (4-53) and (4-54) are met, values of the

function Ul (knP) were calculated for all the required combinations of
I

initial and final states. As in the case for Ellison's potential-energy

surface, this calculation was performed during the main computer program;

that is, the functions uI (knP) were computed during the actual integration

1
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program for 1(11,0,13) , whereas the functions Uf(r,P) and Rnf(r;P) were
previously calculated and entered as input data.

Potential-Energy Functions

Values of the potential-energy function _f(r,P) were computed and

stored on cards for later use as input data. For convenience, the equa-

tions used in this calculation are summarized as follows:

6-20)

(,(,,,(P)= _-//ok,s/_/exr (-/-_7_'P) - D_,._
6-21)

6-22)

_(p) = ,-/.oo -.z.l_l {_,,,l, (_.2_.1 iP-x.sf] (6-23)

CP)= /. _,>" (6-24)

(6-25)

Here, the variables P, r, and rE(P ) have the dimensions of A, the functions

VL(r,P), Um(P), D(P), and _f(r,P) have the dimensions gram A2/sec2, and
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o-i
a(P) has the dimension A .

Eigenfunctions and Eigenvalues of Perturbed Morse Oscillator

Because the term T in Equation (4-1) vanishes for VL(r,P ) as formu-

lated above, the perturbed Morse oscillator eignefunctions and eigenvalues

equal R°nf(r;P ) and ¢O(P),n respectively. From Equations (4-13) through

(4-21) values of these functions can easily be computed. For convenience,

the above mentioned equations are rewritten in the order that they must be

used to obtain _o (r;P) and cO(p):
nf n

(6-26)

(6-27)

(6-28)

+
(- ,_) _',',_+d _-,,__-,z) ., . (-d

(_,_,)(f_,,z)... (?+,,__-I)
X #}C-

'7 !
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(6-30)

e° (P) = (_.c_'/_-)- % , Lz,_(P)
n A(P) A_(p)

(6-31)

The symbol bHBr denotes the reduced mass for HBr, while the other unde-

fined symbols have the same menaing as in Equations (4-9) through (4-20).

It is more convenient to use the normalized eigenfunctions

(6-32)

where the normalizing constant is

The computed values for Rnf(r;P) and Cn(P ) were stored on cards for

use as input data with the main program.

Range of Initial and Final Conditions

Values of the reaction cross-sections _(ki_ ni, li; kn, nf) and
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S(ki, ni, li) were calculated for all the combinations of the initial

values:

m e__
"_ (6-34)

These conditions have a high probability of occurrence at a temperature of

lO00°K, and should be representative of most of the collisions occurring

between H and Br 2 at that temperature.

Discussion of Results

Using the modification mentioned in the previous section to alter

the numerical procedure outlined in Chapter V, values of S(k i, n i, li)

were calculated for the range of initial conditions given in Equation

(6-34). Tables 13, 14, 15, and 16 contain S(ki, ni, li) for Etr,i = 500,

i000, 1500, 2000 gram A2/sec2, respectively.

To examine the behavior of the reaction cross-sections with respect

to the final vibrational state, the cross-sections S(ki, ni, li) were broken

down into their components _(ki, ni, li_ kn, nf) for several different ini-

tial conditions. Tables 17 and 18 show that, for most of the initial con-

ditions, the largest values of _(k i, n i, li; k n, nf) correspond to the for-

mation of HBr in the lower vibrational states. How this behavior translates
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Table 13. Reaction Cross-Section S Corresponding to

Etr,i = 500 gram A2/sec 2.

n.

l
i°

l
n. i.

1 1
S_

_2

0

0

0

0

i

i

i

i

2

2

2

2

3

3
3
3
4
4
4
4

3o

60

9o
12o
3o
6o
9o
12o
3o
6o
9o

12o
3o
6o
9o

12o
3o
6o

9o
120

6.9989

7.1675

7.1328

7.0350

6.6960

6.5863

6.6675
6.4848

5.9525
6.0841

5.9480

5.8783

5.4506

5.5875

5.4431

5.4955

5.1856

5.0876

5.O838

4.9094

5 30 4

5 60 4

5 9O 4

5 120 4

6 30 4

6 6O 3

6 90 3
6 120 4

7 30 3
7 60 3

7 90 3
7 120 3

.5320

.5829

.4924

.6943

.1062

.9401

.9400

.oo31

.6592

.5438

.6123

.67Ol
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Table 14. Reaction Cross-Section _ Corresponding to

Etr,i = i000 gram A2/sec .

n.

1
i°

l
n° !.
1 l

S_

0

0

0

0

i

i

i

i

2

2

2

2

3

3
3
3
4
4
4
4

3o

60

9o
12o
3o
6o
9o
12o
3o
6o

9o
120

3o
6o
9o

120

3o
6o

9o
120

7.5671

7.3824

7.4420

7.2333

6.6789

6.521o
6.6892

6.4122

5.9123

5.9666

5.8944

6.o211
5.5512
5.5484

5.4o5o
5.5962
5.1777

5.1o18
5.0461

4.9273

5 30 4. 6865

5 60 4. 5987

5 9o 4.62m6
5 !20 4.5933

6 30 4.1459

6 60 4.nalavj_j

6 90 4.2573

6 120 4.1994

7 30 3. 5288

7 60 3.6528

7 90 3. 5411

7 120 3.5078



Table 15. Reaction Cross-Section S Corresponding to
Etr,i = 1500 gramA2/sec2.

n°

1
i.

l
s, j2 n. 1.

1 1
S_

0

0

0

0

I

i

i

i

2

2

2

2

3

3
3
3
4

4

4
4

3o

6o
9o

120

3o
6o
9o
12o
3o
6o

9o
120

3O
6o

9o
120

3O
6o

9O
120

7.1989

7.0789

7.6819

6.7733

6.6056

6.717o
6.4204

6.5328

5.9692

5.9988

6.o129
5.8412

5.4511

5.3999
5.4030

5.5o02

4.9183
4.8003

4.7556
4.4212

5 30

5 6o
5 9o
5 120

6 30

6 6o
6 90
6 12o
7 30

7 60

7 90

7 120

4.o168

4.1333

4.o_
4.0077

3.8623

3.7991

3.8006

3.8770

3.6413

3.7931

3.7332

3.5216
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Table 16. Reaction Cross-Section S Corresponding
= 2000 gram A2/sec2.

Etr,i

to

n°

1
.

l
n. i.

l 1
S_

_2

0

0

0

0

I

i
i

i

2

2
2

2

3

3

3

3
4

4

4

4

3O
6O

9O
120

3O
6O

9O
120

3O
6O

9O
120

3O
6O

9O
120

3O
6O

9O
120

7.3194

7.4188

7.2202

7.3597

6.5785

6.7955

6.52O2

6.4958

5.9641

5.8959

5.85O9

5.9594

5.4561

5.3799

5.3958
5.4001

5.O598

5.1738

5.0163

5.1253

5 3O

5 6O

5 9O

5 120

6 3O
6 6O

6 9O
6 120

7 3O

7 6O

7 9O

7 120

4.7727

4.7334

4.6236

4.6587

4.2040

4.1172

4.1964

4.2050

3.5791
3.8637

3.8572

3.4502
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Table 17.
m

Reaction Cross-Section _ Corresponding to

= 1500 gram A2/sec 2.
Etr,i

n°

1 1.1 nf -_, _2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
4
4

30 0 i.8709

30 I 2.6707
30 2 i.8437

30 3 O.5959
30 4 O.1462

3O 5 O.O485

30 6 0.0230

60 0 O.3199

60 i O.6176

60 2 3.2168

60 3 1.8711

60 4 0.7139

60 5 0.2236
60 6 0.1260

90 0 O.3070

90 i O.4330
90 2 3.8247

9O 3 2.1361
90 4 O.6611

90 5 O.2358

90 6 O.0842

120 0 O.5468

120 i i.II00

120 2 2.5201

120 3 i.7048

120 4 O.6151

120 5 O.1733

120 6 O.0554

120 7 O.0478

3O 0 O.O256
30 i 0.4606

30 2 2.4207

30 3 1.3924
30 4 0.4646

3O 5 O.1128

30 6 0.0321

3O 7 O.OO95

6O 0 0.0215

60 i 0.4278

60 2 2.i171

60 3 i.5306

6O 4 O.5159
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n°

i

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

(Continued)

l°

I

6o

6o

6o

9o

9o

9o

9o

9o

9o

9o

9o

120

120

120

120

120

120

120

120

3o

3o

3o

3o

3o

3o

3o

3o
6o

6o

6o

6o

6o

6o

6o

6o

9o

9o

9o

9o

9o

9o

9o
9o

9o

nf

5
6

7

0

i

2

3
4

5
6

7
0

i

2

3
4

5
6

7
0

i

2

3
4

5
6

7

o

i

2

3
4

5
6

7
0

i

2

3
4

5
6

7
8

O.1305

O.O449
O. O120

o.oo85
O. 1208

f

O. o311

2. 1775

1.2428

0.4059

O. 1392

O. 0298

O. Ol02

O. 2181

O. 7370
i. 66!4

1.io78

o.35o7
O.lO88
O. O272

0.0267

0.2277

O. 7228

I. 4266

o. 8009
O. 3426

O. 0773

0.0167

0.0110

O. 2015

O. 4-724

1.5257

i. 0953

O. 3846

o. o831

o.o195

O.OLO5

o. 1819
O. 3814

0.6323

i. 6!33

0.6755

O. 1686

0.0551

0.O146

17
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n°

1

7

7

7

7

7

7

7

7

7

(Continue d)

l.

l nf

120

120

120

120

120

120

120

120

120

0

i
2

3
4

5
6

7
8

0.0034

0.0991
0.2413

0.5634

1.2218

0.9408

0.3405
0.0806
0.0307

175
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Table 18. Reaction Cross-Section _ Corresponding to

Etr_i = 2000 gram A2/sec 2.

1. nfn i

i

i

i

i

I

i

i

i

i

i

i

i

i

i

i

i

i

1

i

i

i

i

i

i

1

i

i

i

i

I

i

4

4

4

4

4

4

4

4

4

4

4

30 0 0.3629

30 i O. 7314

30 2 3.1559

30 3 1.7252

30 4 0.4729

30 5 O. iii0

30 6 O. 0192

60 0 O. 5221

60 i i. 0642

60 2 1.4450

6o 3 1.745o

60 4 I. 3306

60 5 o. 5079

60 6 o. 1397

6o 7 O. 0410

9o o o.3811
90 1 0. 9877

9O 2 2.4-651

90 3 1.7217

90 4 0.7576

90 5 O. 1428

90 6 o. 0489

90 7 O. 0153
120 0 O. 5376

120 i i. !O04

120 2 2.5316

120 3 I. 5634

120 4 O. 5665

120 5 O. 1442

120 6 0.0360

120 7 O. 0161

30 0 O. 0127

30 i O. 3066

30 2 O. 8072

30 3 2.1249

30 4 i. 3042

30 5 0.4664

30 6 0.0301

30 7 0.0077

60 0 O. 0187

60 l O. 0872

60 2 O. 8117
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Table 18. (Continued)

n._ i._ nf

4 60 3 2.2063

4 60 4 1.4195

4 60 5 O.5494

4 60 6 0.0702

4 6O 7 O.0108

4 90 O O.0079

4 9O 1 O.I082

4 90 2 O.6194

4 90 3 2.4575

4 90 4 i.3487

4 90 5 O.3722

4 90 6 O.0823

4 90 7 o.o2ol

4 12o o o.0063

4 12o i o.o971

4 120 2 O. 5388

4 120 3 2.4724
4 120 4 i.4661

4 120 5 O.4271

4 120 6 O.0899

4 120 7 O.0276

7 30 0 O.0137
7 30 i O.1172

7 30 2 O.6212

7 30 3 1.6229

7 30 4 O. 9114

7 30 5 0.2173
7 30 6 O.0566

7 30 7 O.0188

7 6O O O. OO98

7 60 i O. 0725

7 60 2 0.4361

7 60 3 i. 7086

7 60 4 1.1327

7 60 5 O. 3964
7 6o 6 o. o868

7 6o 7 o.o2o8

7 90 o o.0097

7 90 i o. 1528

7 90 2 o. 2722

7 90 3 o. 5117

7 9o 4 1.5887

7 90 5 o. 9443



Table 18. (Continued)

n.l l.l nf

7 90 6

7 90 7

7 90 8

7 120 0

7 120 i

7 120 2

7 120 3

7 120 4

7 120 5

7 120 6

7 120 7

7 120 8

O. 3009

O. 0614

o.o155
O. OO28

O. 0718

O. 2032

O. 4947

1.3080

o.8943
O. 3546

O. 0837

O. 0371
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with respect to the detailed rate constants K must be determined through

the use of Equation (5-79).

Dependence of Reaction Cross-Sections _ on the Final Vibrational State

By calculating the cross-sections _(ki, ni, li; kn, nf, if) for all

of the possible final states corresponding to the initial conditions and

employing Equation (5-77), the reaction cross-sections _(ki, ni, li; kn, nf)

were determined. The results are reported for (i) all the possible combi-

Etr,i = 1500 gram A2/sec2, n.l = O, 4, 7, and l.m = 30, 60, 90,nations of

120 in Table 17, and (2) all the possible combinations of Etr,i = 2000 gram

A2/sec2, n. = i, 4, 7, and i. = 30, 60, 90, and 120 in Table 18.
1 1

Assuming the initial conditions are described by a Maxwell-Boltzmann

distribution for a temperature of lO00°K, Etr,i = 1500 gram A2/sec2 corre-

sponds to a relative velocity about midway between the most probable and

average relative speeds. The average relative translational energy at

lO00°K is Etr,i = 2000 gram A2/sec 2.

The fraction of Br 2 in the indicated vibrational-rotational states

are given by the quantity

(6-35)

where Eint(ni, li) are the coupled vibrational-rotational energy levels,

gl. is their degeneracy factor, and Qint is their corresponding partition
l

function (112).

From Tables 17 and 18 it is obvious that most of the H + Br 2 colli-
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sions involve those internal states of Br2 leading to reaction cross-

sections which are peaked at the lower vibrational levels of HBr. Since

the integrand in Equation (5-79) is proportional to Fin t _, it is apparent

that the larger detailed reaction rate constants will occur for nf _ 4.

Therefore, when Equation (6-20) is used as the potential-energy surface,

there exists excellent agreement between the experimental results of

Polanyi (i0) and the perturbed Morse oscillator calculations.

The Total Reaction Cross-Sections S

For all combinations of the initial conditions given in Equation

k i , ii ......._........(6- 3_, values of S( ni, ) were obtained by summing the croso-oc_u±ulio

_(k i, n i, li; kn, nf) over all the possible vibrational states of HBr.

Tables 13, 14, 15 and 16 contain the results of this effort for Etr,i =

500, i000, 1500, 2000 gram A2/sec2, respectively.

As in the case for Ellison's potential-energy surface, the reaction

cross-sections S(ki, ni, li) are not strongly dependent on initial condi-

tions. This result is again due to the use of Equation (3-49) for the

exact wave function; that is, the wave function Xf does not take into

account the distortion of the incoming wave function, Equation (3- 27), by

the potential VL(r,P ). The slight decrease of S as n. increases is physi-i

cally untenable, since increasing initial energy should lead to greater

probability of reaction. The function Z (P) has n. nodes, and apparently
n. I
l

the increased oscillation of Z (P) creates a canceling effect in the inte-
n.
I

gral 1(11,0,13). Since the use of Xf does not allow for the distortion of

Z (P) in the early stages of the collision, the declining trend of S with
n.

1

increasing n. cannot be overcome.
l
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The Simple Collision Theory

The magnitude of the reaction cross-sections S(ki, ni, li) compares

favorably with the cross-section required for the simple collision theory

of bimolecular reaction rates (113) to produce a frequency factor in agree-

ment with experiment (114). For instance, the simple collision theory

yields the following expression for the rate constant of a reaction A + B

C + D:

T y" (- ,%, (6-36)

where _ is Boltzmann's constant equal to 1.38054 gram A2/sec2 per degree

, 1023Kelvin, and N is Avogadro's number or 6.02252 x mole -I. The quantity
a

Eact, called the activation energy, is the minimum amount of relative trans-

lational energy with which A and B must collide in order for reaction to

occur. The symbol SAB denotes the collision cross-section of molecules

A and B based on the hard sphere model. Taking a typical value of S(k i, n i,

li) from Tables 13 through 16, say, S = 7.0789 _2 corresponding to Etr,i =

1500 gram A2/sec2, n. = 0, i. = 60, and setting SAB = S, one obtains a fre-i i

quency factor

Equation (6-37) is in excellent agreement with the experimental range of

1012 z 1012 ifrequency factors 6.52 x TZ - 11.34 x TZ cc/(mole-sec) proposed
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by Levy (i01), Campbell and Fristrom (114), and Britton and Cole (115).

Because of the weak dependence of S(k i, ni, li) on the initial

conditions, K t will not be markedly influenced by temperature. The insen-

sitivity to temperature is in semi-qualitative agreement with the results

of most experimental studies (102, 103), which attributes this behavior

to a low activation energy for H + Br 2 _HBr + Br. As mentioned in

Chapter V, however, the lack of influence of the initial conditions on

S(ki, ni, li) is due primarily to the use of Xf as the exact wave function

and only slightly to the low activation energy of the potential VL(r,P ).

Determination of Reaction Rate Constants by the Modern Collision Theory

The end result of the modern collision theory (I, 2) was the deriva-

tion of the equations

(6-38)

- F,., d

(6-39)
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Assuming a Maxwell-Boltzmann distribution for the reactant mole-

cules, the reaction rate constants K and K t can be obtained from the

reaction cross-sections _(ki, ni, li; kn, nf) and S(ki, ni, li) , respect-

ively.

Unfortunately, the limitations of computer time made it impractical

to consider initial conditions other than those listed in Equation (6-34).

Because of the weak dependence of a and S upon initial conditions, however_

the reaction rate constants K and Kt can be evaluated approximately from

Equations (6-38) and (6-39) by using the cross-sections corresponding to

the average initial translational, vibrational, and rotational energies.

At lO00°K, the average molecular translational, vibrational, and rotational

energies are 2072, 1090, and 1381 gram A2/sec 2, respectively. These

energies correspond closely to the initial conditions n.m = i, ii = 90, and

= 2000 gram A2/sec2, for which the reaction cross-section S is given
Etr,i

in Table 16; hence, let SaV denote S(2000, 90).

The temperature at which Polanyi (i0) determined the values of

[(nf)_(nf = 3) for H + Br 2 _HBr + Br was about 500°K (based on the

rotational temperature). For comparison, therefore, the cross-sections

used in Equation (6-3 2 should correspond to average translational, vibra-

tional, and rotational energies of 1036, 419, and 690 gram A2/sec2, re-

spectively. The initial conditions Etr,i = 1500 gram A2/sec2, n.l = O,

and I. = 60, correspond closely to the above values, so the cross-sections
l

_(i000, O, 60; kn, nf) of Table 17 will be used for comparison with the

data in Table 3 and will be denoted as _av(nf).

The variables of integration in Equations (6-3_ and (6- 3_ can be

converted from the absolute momenta PH' PBr 2 to the momenta of the center-
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of-mass and relative motion (i, 3, 22). Conversion to spherical coordi-

nates and integration over all variables except the magnitude Pi of the

relative momentumyields (i, 3)

_;:o _.-=-e

(6-40)

oO

_+- (_/_+) (#_/_T) _/_Z__ Z &+(n,,e,) (6-4l)

Jo J /

In turn, the variable of integration can be converted from Pi to Etr,i to

give (i, 3)

• /1;:0 _'=o

- £/__T
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(6-43)

./T' {-& j _ j L ) £ e J £

has been replaced by the dummy variable E. Substituting
Here _ Etr _i

_av(nf) for _(nf) and SaV for S, and summing over n i, ii result in

(>T_:) w
_(_} E e,F(-_/4x) :;E

(6-_)

(6-_5)

since

(6-_6)

The integral in Equations (6-44 ) and (6-45) is easily evaluated as

(_BT)2, _o

(6-47)
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o3
Equations (6-47) and (6-48) give the rate constants in the units A /mole-

cule-sec. If Equation (6-48) is multiplied by N a x 10 -24_ the frequency

factor of the simple collision theory results in units of cc/mole-sec.

Using the value of SaV = 6.5202 _2 from Table 16, one obtains

at T = lO00°K. Since the range of experimental values quoted from various

i014 1014 cc/mole-sec at lO00°K_sources (1Of, 114, 115) is 1.04 x - 6.30 x

the agreement between experiment and the admittedly crude calculation above

is remarkable.

From Equation (6-4_ it is seen that

(6-5o)

m

Using the values of _av(nf) in Table 17, the ratio _(nf)_(3) can be deter-

mined for comparison with Polanyi's experimental results (iO). In Table

19, the values of _(nf)_(3) calculated from Equation (6-50) are compared

with the values in Table 3. There is notable qualitative agreement between

experiment and the simple calculation represented by Equations (6-47) and

(6-5o).
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Table 19. Theoretical and Experimental Detailed Rate Constants

for Formation of HBr in Various Vibrational States;

Normalized to the Detailed Rate Constant for the Third

Vibrational State.

Vibrational Quantum

Number of HBr

Theoretical Detailed

Rate Constant
Experimental Detailed

Rate Constant

1.00

o.38

O. 12

O.O7

1.00

0.64

0.19

o.o5
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CHAPTER Vll

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The foregoing investigation has demonstrated the severe complications

encountered in the quantum mechanical description of chemical reactions.

Even the relatively simple derivation of an expression for the reaction

cross-section involved tedious attention to detail. Furthermore, the sub-

sequent calculation of the reaction cross-sections required so much com-

puter time, even on a high-speed computer, that computations were limited

to a few representative initial conditions.

It was shown that good agreement between theory and experiment can

be obtained if sufficient care is taken in approximating the exact wave

function for the collision. Using the perturbed Morse oscillator method

to describe the distortion of the HBr bond in the presence of another

bromine atom resulted in reaction cross-sections which, when used in a

simplified collision theory, gave rate constants that compared favorably

with experiment. On the other hand, the dependence of the rate constants

was obscured by the seemingly lack of dependence of the reaction cross-

sections on initial conditions. This lack of dependence was c_used by

the expansion of the exact wave function in terms of distorted final wave

functions. Even if this difficulty were not present, however, calculation

of reaction cross-sections corresponding to all the initial conditions re-

quired to use the unsimplified collision theory of reaction rates would

consume a prohibitive amount of computer time.
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Detailed rate constant calculations by the perturbed Morse oscilla-

tor method reinforce the classical mechanical results of Polanyi. That

is, "attractive" potential-energy surfaces lead to higher vibrational

states for the products, whereas "repulsive" potential-energy surfaces re-

sult in less vibration of the product molecule. Since infrare_ chemilumi-

nescence spectroscopy has demonstrated that the product molecules in the

reaction H + Br 2 _r + Br are formed predominantly in the lower vibra-

tional states, it is concluded that the potential-energy surface for this

reaction is "repulsive". Of course, the exact degree of repulsiveness has

not been accurately determined. The potential-energy surface which yielded

results in good agreement with experiment was, by the definition of Polanyi_

about two-thirds "repulsive".

Recommendations

Another method for obtaining the total rate constants K t of the

reaction H + Br 2 _H_r + Br is to consider the reverse reaction _Br + Br

Br 2 + H. Just as in the case of the forward reaction, the exact wave

function for the latter process could be conveniently expanded in terms of

perturbed Morse oscillator functions of HBr. For the reverse reaction,

however, this expansion corresponds to the exact wave function evolving

9+ and as such will describe more
from the initial asymptotic state, or i'

explicitly the distortion of the initial relative motion. Thus, the effect

of the activation energy will not be as obscured as it was when Xf was used

to describe the forward reaction. If the resulting rate constant for HBr +

_t for the forward reaction
f

Br _ H + Br 2 is denoted by , the rate constant K t

can be obtained from
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Kf
t = < Keq

where K is the equilibrium constant for the forward reaction.eq

Aside from the study of exothermic, bimolecular_ reactive colli-

sions, the perturbed Morse oscillator methodcould be used to study the

vibrational excitation of a strongly bounddiatomic molecule AB upon

collision with an atom C which only slightly distorts the AB bond. That

is_ expressions for the cross-sections of the inelastic process

C +AB _C +AB

where AB is a vibrationally excited molecule_ can be derived by modifying

the perturbed Morse oscillator method to describe direct collisions rather

than rearrangement collisions. Calculations based on this treatment should

be in better agreement with experiment than calculations which do not take

the distortion of the AB bond into account.
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APPENDIXA

COLLISIONCROSS-SECTIONS

Molecular Species

In order to keep track of the numerous molecular processes occurr-

ing in a reacting mixture of gases, one must devise a system for classify-

ing the various types of molecules. One method is to define a molecular spe-

cies as including all the molecules possessing the same chemical type and

the same internal state; i.e., all of the quantum numbers required to

specify completely the internal state must be the same. In the case of a

diatomic molecule in the ground electronic state, the required quantum

numbers would be the vibrational, total rotational, and z-component rota-

tional quantum numbers, and the nuclear spin.

For identification purposes, the chemical type can be labeled by

capital letters, A, B, C, D, ..., and the complete set of quantum numbers

can be symbolized by one lower case letter such as i, j, k, i, ..., in

parenthesis.

Binary Collisions

Before two molecules collide, they approach each other in an essen-

tially straight trajectory. As their separation decreases, their common

force field becomes sufficiently strong to cause the trajectory to curve.

As the molecules or the products of their reaction depart to a sufficient

separation, the trajectory of relative motion once again becomes a

straight line. But, the distortion by the mutual force field causes the
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direction of relative departure to deviate from the direction of relative

approach. The two spherical coordinates, a polar angle and an azimuthal

angle in somesuitable coordinate system, describing this deviation are

called the scattering angles. For the center of mass coordinate system,

Figure 9 contains a diagram of the initial and final stages of the scatter-

ing process. The two scattering angles ® and _ are clearly shown. Nota-

tionally, the two scattering angles can be written as _.

Twomolecules A(t) and B(j) may collide to exchange momenta(elastic

collision), in which case they remain A(t) and B(j) molecules. However_

one or both of the molecules mayundergo a change in internal state; +_

one or both molecules undergo a species change to A(t t) and B(j'), but the

chemical type remains the same. On the other hand, the molecules A(t) and

B(j) might react chemically with one another to becomeC(k) and D(1) mole-

cules, respectively. The probability with which these various types of

collisions will occur will be a function of the element of solid angle

into which the products are scattered. Let d_ represent the element of

solid angle oriented in the center of massspherical coordinate system by

the angles ® and _ and let Ns(®, 9) d_ be the numberof B(j) molecules re-

sulting in D(1) molecules being scattered into dO per second. Species

C(k) and D(1) maydiffer from A(t) and B(j) according to whether the colli-

sion is elastic, inelastic, or reactive. Obviously,

where Nb = B(j) molecules/cm2-sec converging on the A(i) molecules

N = numberof A(i) molecules per cm3.
a

(A-l)
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Y X

_A(t)

(a) Before Collision

Y

X f

(b) After Collision

D(_) I

®

Figure 9. Collision Between Two Molecules with Reaction
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Insert a constant of proportionality into this expression so that

= ,./eJ r (A-2)

i

The quantity of(®, @) is the differential scattering cross-section for

elastic, inelastic, and reactive cross-sections, depending on how C(k) and

D(1) differ from A(i) and B(j). The symbols i and f denote the complete

sets of initial and final quantum numbers, respectively. From Equation

(A-l),

2
which has the dimensions of cm per target molecule. Accordingly,

c_(®, @) d_ may be considered to be the area presented by each target mole-

cule A(t) for scattering of the products C(k) and D(1) into the element of

solid angle d_ when approached by the projectile B(j).

The total differential cross-section, Equation (A-3), can be written

as the sum of the particular cross-sections corresponding to elastic, in-

elastic, and reactive scattering. When theoretical calculations of cross-

sections are made, the three types of collisions are usually considered

separately.

The total scattering cross-section is defined as
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- @=o

Physically, _ represents the area presented by each target molecule for

scattering into the total solid angle, 4w steradians. For convergence of

i
the integral in Equation (A-4), _f must increase less rapidly than 1/® 2

for decreasing @ as ® approaches zero.

In general_ both the differential and total collision cross-sections

are dependent on the initial relative velocity with which A(t) and B(j)

approach each other.
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APPENDIX B

CLEBSCH-GORDAN COEFFICIENTS AND ANGULAR MOMENTUM

The discussion that follows closely resembles that of Messiah (116).

Relations useful to the development of the main text of the present work_

especially Chapters V and VI, are presented without proof. An excellent

text by Edmonds (108) treats the subject of angular momentum rigorously.

Notations and Conventions of Angular Momentum

are written in units such that _ = !.The relations that follow

Angular Momentum Components

^
Let the angular momentum operator be represented by J and its

cartesian coordinates by J _ J, and J .
x y z

Then define the operators

(B-I)

Commutation Relations

Standard textbooks on quantum mechanics (117) discuss more fully

the following relations:

(B-2)
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(B-3)

where [A_ B] = AB - P_ is called the commutator of the operators A and B.

Basis Vectors of the Angular Momentum Operators

The following definitions will be useful:

A vector space is spanned by a set of vectors {Ai} if any vector

in the vector space can be expressed as a linear combination of the set

{Ai}.

The dimension of a vector space is the minimum number of vectors

required to span the vector space.

A set of vectors AI_ A2, ..., An is linearly independent if the

equation

C, A, + c, A_. +---÷ c,, A_ = _ _. A= = o
,4.

requires all c. = O. The set {Ai} is linearly dependent if Equation (B-5)i

can be solved with some c.@ O.
l

A basis of a vector space is some linearly independent set of vectors

that spans the vector space; an orthonormal basis of a vector space is some

orthonormal set which spans the space.

Spherical Harmonics and Eigenvectors

The spherical harmonics _j(@, @), which are simultaneous eigenfunc-

tions of the angular momentum operators _ and Jz _ can be considered a
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representation of (2J + i) vectors since M = -J, -J + i, ..., J- i, J

for fixed J. Using the eigenvector notation of Dirac (118), _j(8, ¢) is

written as I J, M >, and

J_ IJ,M> : J(J+l)/J,M> (B-6)

j_ /J,M> = M [J,M> (m7)

J÷ 1.71M> : v (J* J)-M(M±,)

represent the action of _, Jz' and J± on I J, M >.

Dirac (118) defines the eigenket < J, M I such that the orthogonal-

ity property of I J, M > can be expressed as

<j'_M'/ IJ,M> - <J'_M'IJ_M> (B-9)

=o :o " M,,I"

Coupling of Angular Momentum

^ ^

Let Jl and J2 represent the angular momentum operators of the quan-

^
tum systems i and 2, respectively, and let J be the angular momentum opera-

tor of the total system i and 2 combined; then
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The tensor product of the (2j I + l) vectors of system l, I Jl' ml >' by

the (2J2 + i) vectors of system 2, I J2' m2 >' gives the (2Jl + l)(2j 2 + i)

.2 .2
simultaneous eigenvectors of Jl' J2' j2 Jz:

7

from which one can obtain, by a unitary transformation_ the (2Ji + i)

_2 _2 _ Jz' the vectors(2J2 + i) simultaneous eigenvectors of Jl' J2' '

where J = I Jl- J2 ]' "''' Jl + J2; M = -J, ..., J.

The Clebsch-Gordan coefficients

are the coefficients of that unitary transformation (119). The notation

for the Clebsch-Gordan coefficients in reference (116) is C(j I, J2' J;

ml, m2, M).

The definition of the eigenvectors in Equations (B-If) and (B-12)

is completed by fixing their relative phases as follows:
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(i) the I Jl' mi >' the I J2' m2>' and the I Jl J2 J M > obey

Equation (B-8).

(ii) C(Jl, J2' J; Jl' Jl -J' J) > 0 and is real.

Principal Properties of Clebsch-Gord_n Coefficients

Reality

The Clebsch-Gordan coefficients are all real

Selection Rules

The Clebsch-Gordan coefficients vanish unless

(B-I_)

Permutation Relations

(B-15)

(B-z6)

- vaj,,, c(J,_,_,_ t_,-,,,,,,,,,)
(B-iT)
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(B-z9)

0rthogonality Relations

PI! --- -_'1 /';I,,_ = --_

,,,,.,,M')- _ 6
..gj, ,'%

where I Jl - J2 I < J _ Jl J2' -J < M < J.

2 (B-21)

=_

where -Jl _ ml _ Jl and -J2 _ _ _ J2"
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Composition Relations for the Spherical Harmonics

! (B-22)

,_. '-/J_C;_i_t,)

(B-23)

Special Values

When J and M take their maximum value_

(B-S0

When either Jl or J2 is zero,

d ( },,o...7-;_,>,,o,_) = c(},, o,.j,; ,,-,,,,,>,,,,,) = i (B-25)
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When ml, m2, and m3 all vanish, then

c <_,,_ ,7, s°;o,oj- o
(B-2ro)

if Jl + J2 + J3 is odd; if 2p = Jl + J2 + J3 s even, then

(B-27)

p./

(p-_,)! (p-4_)! (p--7,)!

where

(<_+l>-c ) ! ( l>-_c-o< ) ! ( d + ,_- DJ I
(s-28)
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APPENDIX C

EFFECT OF INDISTINGUISHABILITY OF BROMINE ATOMS

ON REACTION CROSS-SECTIONS

The analysis presented here is to show the effect of indistinguish-

ability of bromine atoms on the calculation of reaction cross-sections for

the reaction H + Br 2 _HBr + Br. The approach used is the same as that of

Tang (70), who studied the reaction D + H2 _ DH + H.

Because the magnetic moment associated with nuclear spin is very

small, the coupling between the nuclear spin and other modes of motion

is very weak. Thus, a binary collision of the type A + BC _ AB + C, where

B and C are identical particles, is not expected to result in any altera-

tion of the nuclear spin of B and C.

In the case of the collision H + Br 2 _ HBr + Br, one bromine atom

is labeled as B and the other as C. Also, the relative position vector

from the center of mass of AB to C is denoted as P_, and the corresponding

vector from the center of mass of AC to B is labeled _ B. The asymptotic

form of the wave function (without spin) can be written, in terms of the

products, as

(C-I)

or
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Since the two bromine isotopes have atomic masses of 79 and 81,

they are both fermions (112). Thus, the bromine molecular wave function

is antisymmetrical with respect to interchange of B and C_ if both B and

C have the same mass.

Assume that both bromine atoms have the same mass, and that the

total wave function for Br 2 can be approximated as

where ¢elec' ¢n.s.' Crot' and ¢vib are the electronic, nuclear spin, rota-

tional, and vibrational wave functions, respectively. The ground electronic

state of Br 2 is symmetrical (112) with respect to inversion of the nuclei,

and the vibrational state of any homonuclear molecule is likewise symmetri-

cal. The nuclear spin state for Br 2 can either be symmetrical or anti-

symmetrical, while the rotational state of any homonuclear molecule is

symmetrical for even J states and antisymmetrical for odd J states (112).

To preserve the overall antisymmetry of the Br 2 wave function, however, the

odd rotational states must correspond to the symmetrical spin states, where-

as the even rotational states must coincide with the antisymmetrical spin

states.

If the initial state of the bromine molecule is such that the quan-

tum number J is odd_ the nuclear spins of the two bromine atoms must be

combined in a symmetrical state throughout the collisional process; that
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is, the space wave function must remain antisymmetrical with respect to

B and C. The antisymmetrical wave function suitable for the description

of direct scattering can be written as (70)

where @n(_Br2) is the antisymmetrical (including spin) molecular wave func-

tion for bromine and n runs through all vibrational and odd rotational

states. The total wave function Y(A_ 3, C) can also be written in a form

pertaining explicitly to the boundary condition with atom B going to in-

finity:

_.,

where n now runs through all vibrational states and rotational states

(even and odd) of H]3r. Likewise, for the case of atom C going to infinity,
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z"-",, (rAs)
(c-6)

Because the antisymmetry of the wave function Y(A, B, C) is lost

in Equations (C-5) and (C-6), an antisymmetrical combination of the two

must be made to give the total wave function:

F

(c-7)

_" I _-"(A, By C) - _,"_ A,C, B)} ct3"-"_, cj3_,

The exchange amplitude_ the expression inside the braces, can be related

to the incident wave function by using Equation (C-4) for Y in the inte-

grand of Equation (C-7). Since Y of Equation (C-4) is antisymmetrical,

the second term in the bracket under the integral sign of Equation (C-7)
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just duplicates the first term. As a result_ the asymptotic form of

Equation (C-7) is

(c-s)

with

(c-9)

_(A,_,C) "'_" _13

It is apparent that the differential cross-section for any parti-

cular state is

(C-10)

Using similar arguments, the same result is obtained for bromine

molecules initially in even (J even) rotational states. Also_ for bromine

molecules consisting of both isotopes (atomic masses 79 and 81), the dis-

tinguishability of Br 79 and Br 81 make the above argument unnecessary. In

this case, the differential reaction cross-section for the reaction of H

with each of the isotopic species is
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_ce_l _ _'I_ _I_ (C-II)

The small difference in _f for Br 79 and Br 81 enables one to closely

approximate the differential reaction cross-section for _r formation

by Equation (C-IO).

For all cases, therefore, the correct differential cross-section

is essentially twice that obtained by concentrating on the reaction of H

with one particular atom in Br 2.
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